Scikit-learn 笔记之 LogisticRegression

Scikitlearn中的LogisticsRegression API

LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100, multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)

参数说明

  1. penalty: 用于选择正则化项。参数值为‘l1’时,表示正则化项为l1正则化;参数项为’l2‘时表示正则化项为l2正则化。正则化时防止模型过拟合最为常用的手段之一。
  2. dual: bool类型,选择目标函数是否为对偶形式。
  3. tol: float类型,优化算法停止的条件。比如设置tol=0.001,当迭代前后函数的差值<=0.001时就停止。
  4. C: 越小的数值表示越强的正则化。
  5. fit_intercept: bool类型,用于选择模型中是否含有b。
  6. class_weight: 用于设置每个类别的权重。
  7. fit_intercept: 是否在向量中加上一列1,形成新向量。
  8. random_state: 随机数种子,int类型,可选参数,默认为无,仅在正则化优化算法为sag,liblinear时有用。
  9. solver: 选择使用哪一个优化算法进行优化。
  10. max_iter: 优化算法的迭代次数。
  11. multi_class: 用于选择多分类的策略
  12. verbose: 是否热启动
  13. n_jobs: 使用cpu的几个核来跑程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值