Scikitlearn中的LogisticsRegression API
LogisticRegression
class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100, multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None)
参数说明
- penalty: 用于选择正则化项。参数值为‘l1’时,表示正则化项为l1正则化;参数项为’l2‘时表示正则化项为l2正则化。正则化时防止模型过拟合最为常用的手段之一。
- dual: bool类型,选择目标函数是否为对偶形式。
- tol: float类型,优化算法停止的条件。比如设置tol=0.001,当迭代前后函数的差值<=0.001时就停止。
- C: 越小的数值表示越强的正则化。
- fit_intercept: bool类型,用于选择模型中是否含有b。
- class_weight: 用于设置每个类别的权重。
- fit_intercept: 是否在向量中加上一列1,形成新向量。
- random_state: 随机数种子,int类型,可选参数,默认为无,仅在正则化优化算法为sag,liblinear时有用。
- solver: 选择使用哪一个优化算法进行优化。
- max_iter: 优化算法的迭代次数。
- multi_class: 用于选择多分类的策略
- verbose: 是否热启动
- n_jobs: 使用cpu的几个核来跑程序。