(tensorflow)mnist数据集上的应用(四)

在深度学习出现之前,必须借助SIFT、HoG等算法提取具有良好区分性的特征,再集合SVM等机器学习算法进行图像识别。
而卷积神经网络(CNN)提取的特征可以达到更好的效果,同时它不需要将特征提取和分类训练两个过程分开,在训练时就自动提取最有效的特征。CNN可以直接使用图像的原始像素作为输入,而不必使用SIFT等算法提取特征,减轻了传统算法必须要做的大量重复、繁琐的数据预处理工作。
CNN最大的特点在于卷积的权值共享结构,可大幅减少神经网络的节点数量,防止过拟合的同时又降低了神经网络的复杂度。

一般卷积神经网络由多个卷积层组成,每个卷积层有:
1>图像通过多个不同的卷积核的滤波输出结果,加偏置,提取局部特征,每个卷积核会有一个新的2D图像;
2>将前面的卷积核的滤波输出进行非线性的激活函数处理,使用ReLU函数;
3>对激活函数进行池化处理(降采样的方法),一般使用最大池化,提取最显著的特征,并提升模型的畸变容忍能力。

卷积核的权值共享,降低模型复杂度,减轻过拟合并降低计算量。

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)  #截断的正态分布噪声,标准差为0.1
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)  #创建一个常量的tensor
    return tf.Variable(initial)


#创建卷积层
def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    # tf.nn.conv2d (input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", name=None)
    # input:就是需要做卷积的图像,要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,
    # 具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一
    # filter:就是filter就是卷积核(这里要求用Tensor来表示卷积核,
    # 并且Tensor(一个4维的Tensor,要求类型与input相同)的shape为[filter_height, filter_width, in_channels, out_channels]
    # 具体含义[卷积核高度,卷积核宽度,图像通道数,卷积核个数]
    # strides=[1, 1, 1, 1]:卷积操作时在图像每一维的步长
    # padding='SAME',在原图外层补一圈0,将原图的第一点作为卷积核中心,若一圈0不够,继续补一圈0。
    # padding="VALID" :卷积核中心点走过的位置
    # use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true

#创建池化层,选择原始像素中灰度值最大的那个像素,即保留最显著的特征
def max_pool_2x2(x):
    return tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
    # tf.nn.max_pool(value, ksize, strides, padding, data_format="NHWC", name=None)
    # 第一个参数value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape
    # 第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1
    # 第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]
    # 横竖两个方向以2为步长,那么缩小1/4
    # 第四个参数padding:和卷积类似,可以取'VALID' 或者'SAME'
    # 返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式

x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])  #代表着1*784维数据转为原始的28*28的数据结构,-1代表着样本数量不确定,1代表着一个颜色通道

# 定义第一个卷积层
W_conv1 = weight_variable([5, 5, 1, 32])  #代表着卷积核尺寸为5*5,1个颜色通道,32个不同的卷积核
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #用conv2d进行卷积运算,并加上偏置,使用ReLU激活函数进行非线性处理
h_pool1 = max_pool_2x2(h_conv1)  #使用最大池化函数max_pool_2x2对卷积的输出结果进行池化处理


# 定义第二个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])  #卷积核的数量变成了64个,提取64种特征
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#前面经历两次步长为2*2的最大池化,边长为1/4,图片尺寸为7*7,输出的tensor大小为7*7*64
#连接一个全连接层
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #使用reshape函数对第二个卷积层的输出tensor进行变形,将其转成1D的向量
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #然后连接成一个全连接层,隐含节点为1024,并使用ReLU激活函数


#为了减轻过拟合,使用一个Dropout层,随机丢弃一部分节点数据减轻过拟合,预测则保留所有数据来追求最好的预测性能
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#连接一个softmax层得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


#定义损失函数
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

#定义评测的准确率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

#训练开始
tf.global_variables_initializer().run()  #初始化所有参数
for i in range(20000):  #共进行20000次训练迭代
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g" % (i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})


#输出最终分类准确率
print("test accuracy %g" %accuracy.eval(feed_dic={x: batch[0], y_: batch[1], keep_prob: 1.0}))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值