逻辑回归(Logistic Regression, LR)

学概率论的时候不是多么用心,这部分也是随便看看,在此补上。

对似然函数(likelihood function)的理解,极大似然估计

  1. 大家都知道,概率是对要发生事件的结果的预测,而似然就是知道事件的结果对概率进行反推。在某个概率上,某事件最有可能发生。最大似然估计,就是某事件最有可能的那个概率(就是好多文章里面提到的参数)”。
  2. 来个好多文章里面的例子:抛硬币,首先条件,质量分布不均匀,抛的结果是2正1反,(抛正概率为p),p为多少最有可能出现这种情况。
    y = p 2 ( 1 − p ) , 对 y 求 导 , 就 可 得 到 相 应 的 p = 2 3 y=p^2(1-p),对y求导,就可得到相应的p=\frac23 y=p2(1p)yp=32

ps:大家都知道最有可能又不是一定是它,p=0.5 也可以出现这种情况。可是在样本足够多的时候,这就是答案了。

  1. 对数似然(方便求最大值)
    好多文章都说,取对数不会影响y(likelihood function)的单调性, 所以在这里稍稍证明一下 令 y = f ( x ) , 取 对 数 得 到 g ( x ) = l o g ( f ( x ) ) 令y=f(x),取对数得到g(x)=log(f(x)) y=fxgx=log(f(x)) g ′ ( x ) = 1 f ( x ) f ′ ( x ) 在 ( 0 &lt; f ( x ) &lt; = 1 ) 对 应 的 x 区 间 单 调 性 和 g&#x27;(x)=\frac 1{f(x)}f&#x27;(x)在(0&lt;f(x)&lt;=1)对应的x区间单调性和 g(x)=f(x)1f(x)(0<f(x)<=1)x f ′ ( x ) 是 一 样 的 , 所 以 放 心 的 取 对 数 吧 f&#x27;(x)是一样的,所以放心的取对数吧 f(x)

ps:log 的底可能是2,e,10,具体看上下文,此处为e

  1. 最大似然估计
    可以发现,逻辑回归核心还是最大似然估计,找到使函数最大的参数。
    最大似然估计的一般求解过程:
    (1) 写出似然函数;
    (2) 对似然函数取对数,并整理;
    (3) 求导数 ;
    (4) 解似然方程
    和逻辑回归的步骤是不是很像。
    在Andrew ng的课程里取对数后取了负,是为了使用梯度下降才这样的。
  2. one vs all
    这是对多个feature进行LR处理的方法,feature数目n大于2时,把一个feature和其它所有feature组成二元。所以一共进行n次。
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值