使用蚁群算法解决车辆路径规划问题——附Matlab源码
运钞车的路径规划问题是指在给定的时间、路线和规定条件下,如何使得运钞车效率最高地完成货物配送任务。而在城市环境中,由于路线选择的多样性和复杂性,这一问题变得尤其困难。
近年来,蚁群算法被广泛应用于优化问题的求解中。蚁群算法是一种模拟蚂蚁寻找食物的行为策略,其思路是蚂蚁通过发现路径上的信息素来引导后续蚂蚁的行动,从而找到最短路径。在车辆路径规划问题中,我们可以将运钞车看作成蚂蚁,使用蚁群算法来寻找最优路径。
以下是使用Matlab实现的基于蚁群算法的运钞车路径规划程序。
%% 初始化参数
numOfAnts = 20; % 蚂蚁数量
numOfCties = 50; % 城市数量
alpha = 1; % 信息素重要程度因子
beta = 2; % 启发式因子
rho = 0.5; % 信息素挥发因子
Q = 100; % 增加信息素的常数
distance = rand(numOfCties); % 城市之间的距离
pheromone = ones(numOfCties); % 初始信息素浓度
unvisited = (1:numOfCties); % 未访问的城市集合
startCity = 1; % 起点城市编号
endCity = 50; % 终点城市编号
bestTour = []; % 最优路径