白话离散变量分布类型

本文简要介绍了几种常见的离散随机变量分布:伯努利、二项、泊松和几何分布。伯努利分布描述单次试验成功的概率;二项分布涉及多次独立重复试验;泊松分布适用于描述单位时间或面积内的随机事件频率;几何分布则关注连续失败后首次成功发生的概率。超几何分布用于有放回抽样中特定类别数量的概率计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写此文的目的主要是帮助记忆,因此不会赘述各种分布的来龙去脉。详细的内容可查百度百科。

伯努利分布

扔一次硬币,正面朝上的概率。

二项分布

扔n次硬币,有k次正面朝上的概率。
P{X=k}=C n k _n^k nkp k ^k k ( 1 − p ) n − k (1-p)^{n-k} (1p)nk (k=0,1,2…n)

泊松分布

百度百科载:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。

但这里仍然以扔硬币为例。

经非常多次实验统计,若扔n次硬币,则平均有 λ \lambda λ次正面朝上。那么若再做一次实验,扔n次硬币,有k次正面朝上的概率是多少。

P{X=k} = λ k ∗ e − λ \lambda^{k}*e^{-\lambda} λkeλ/k! (k=0,1,2,3…)

在二项分布中,若n很大(n>=20),硬币每次正面朝上的概率p很小(p<=0.05),可近似用泊松分布公式求,其中 λ \lambda λ近似等于n*p。

几何分布

扔k次硬币,终于有一次正面朝上的概率。也就是说前k-1次的是背面朝上,第k次才正面朝上。
P{X=k}= ( 1 − p ) k − 1 ∗ p (1-p)^{k-1}*p (1p)k1p (k=0,1,2…n)

超几何分布

有m个红球,n个白球,抽j个球,其中有k个红球的概率。

P{X=k}= C m k ∗ C n j − k / C m + n j C _m ^k*C _n ^{j-k}/C_{m+n} ^j CmkCnjk/Cm+nj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值