写此文的目的主要是帮助记忆,因此不会赘述各种分布的来龙去脉。详细的内容可查百度百科。
伯努利分布
扔一次硬币,正面朝上的概率。
二项分布
扔n次硬币,有k次正面朝上的概率。
P{X=k}=C
n
k
_n^k
nkp
k
^k
k
(
1
−
p
)
n
−
k
(1-p)^{n-k}
(1−p)n−k (k=0,1,2…n)
泊松分布
百度百科载:泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
但这里仍然以扔硬币为例。
经非常多次实验统计,若扔n次硬币,则平均有 λ \lambda λ次正面朝上。那么若再做一次实验,扔n次硬币,有k次正面朝上的概率是多少。
P{X=k} = λ k ∗ e − λ \lambda^{k}*e^{-\lambda} λk∗e−λ/k! (k=0,1,2,3…)
在二项分布中,若n很大(n>=20),硬币每次正面朝上的概率p很小(p<=0.05),可近似用泊松分布公式求,其中 λ \lambda λ近似等于n*p。
几何分布
扔k次硬币,终于有一次正面朝上的概率。也就是说前k-1次的是背面朝上,第k次才正面朝上。
P{X=k}=
(
1
−
p
)
k
−
1
∗
p
(1-p)^{k-1}*p
(1−p)k−1∗p (k=0,1,2…n)
超几何分布
有m个红球,n个白球,抽j个球,其中有k个红球的概率。
P{X=k}= C m k ∗ C n j − k / C m + n j C _m ^k*C _n ^{j-k}/C_{m+n} ^j Cmk∗Cnj−k/Cm+nj