桥式整流电路原理;电感滤波原理;电容滤波原理

桥式整流电路原理

桥式整流电路如图1所示,图中B为电源变压器,它的作用是将交流电网电压e1变成整流电路要求的交流电压,RL是要求直流供电的负载电阻,四只整流二极管D1~D4接成电桥的形式,故有桥式整流电路之称。

图1

桥式整流电路的工作原理可分析如下。为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。

在e2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管D1流向RL,再由二极管D3流回变压器,所以D1、D3正向导通,D2、D4反偏截止。在负载上产生一个极性为上正下负的输出电压。其电流通路可用图1(a)中虚线箭头表示。

在e2的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过二极管D2流向RL,再由二极管D4流回变压器,所以D1、D3反偏截止,D2、D4正向导通。电流流过RL时产生的电压极性仍是上正下负,与正半周时相同。其电流通路如图1(b)中虚线箭头所示。

综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。

图2

根据上述分析,可得桥式整流电路的工作波形如图2。由图可见,通过负载RL的电流iL以及电压uL的波形都是单方向的全波脉动波形。

桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高。因此,这种电路在半导体整流电路中得到了颇为广泛的应用。

桥式整流电路电感滤波原理

 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,所以电感L有平波作用。

  桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。

  桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。

  例1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压VL=30V,负载电流IL=50mA。试求电源变压器副边电压V2的有效值,选择整流二极管及滤波电容。


桥式整流电容滤波原理

 电容滤波电路利用电容的充、放电作用,使输出电压趋于平滑。

当u2为正半周并且数值大于电容两端电压uC时,二极管D1和D3管导通,D2和D4管截止,电流一路流经负载电阻RL,另一路对电容C充电。当uC>u2,导致D1和D3管反向偏置而截止,电容通过负载电阻RL放电,uC按指数规律缓慢下降。

当u2为负半周幅值变化到恰好大于uC时,D2和D4因加正向电压变为导通状态,u2再次对C充电,uC上升到u2的峰值后又开始下降;下降到一定数值时D2和D4变为截止,C对RL放电,uC按指数规律下降;放电到一定数值时D1和D3变为导通,重复上述过程。

RL、C对充放电的影响

电容充电时间常数为rDC,因为二极管的rD很小,所以充电时间常数小,充电速度快;RLC为放电时间常数,因为RL较大,放电时间常数远大于充电时间常数,因此,滤波效果取决于放电时间常数。

电容C愈大,负载电阻RL愈大,滤波后输出电压愈平滑,并且其平均值愈大。

转自:http://www.dianziaihaozhe.com/lilunxuexi/2212/

### YOLOv8 训练代码潜在错误分析 在检查 `ultralytics` 提供的 YOLOv8 模型训练代码时,需关注以下几个方面来判断是否存在可能的错误: #### 数据配置文件路径 数据集配置文件通常是一个 `.yaml` 文件,在代码中通过 `data` 参数指定。如果路径不正确或者文件不存在,则会引发异常。例如: ```python model.train(data='coco128.yaml', epochs=100, imgsz=640) ``` 上述代码假设当前工作目录下存在名为 `coco128.yaml` 的文件[^1]。如果没有找到该文件,程序可能会抛出 FileNotFoundError 或类似的错误。 #### 预训练模型加载方式 加载预训练模型的方式有多种可能性。以下是几种常见方法及其适用场景: - **从 YAML 定义创建新模型并加载权重** ```python model = YOLO('yolov8n.yaml').load('yolov8n.pt') ``` 此处需要注意的是,YAML 文件定义了网络结构,而 `.pt` 文件包含了实际的权重值。两者必须匹配,否则可能导致维度不一致等问题。 - **直接加载预训练模型** ```python model = YOLO('yolov8n.pt') ``` 这是最常用的方法之一,适用于大多数情况下的迁移学习任务。 #### 训练参数设置 对于训练过程中的超参数调整,以下是一些常见的选项以及它们的作用说明: - `epochs`: 总共迭代次数,默认为 100 轮。 - `imgsz`: 输入图像尺寸大小,默认为 640 像素。 - `batch`: 批量处理样本数量,默认情况下取决于硬件资源可用性[^2]。 另外还有其他可选参数如设备选择 (`device`) 和项目保存位置 (`project`) 等也可以自定义设定。 综上所述,只要确保所使用的各个组件之间相互兼容,并且所有必需输入都已正确定位提供给函数调用即可有效减少发生逻辑上的失误几率。 ```python from ultralytics import YOLO # 初始化模型 model = YOLO('yolov8n.yaml').load('yolov8n.pt') # 开始训练流程 model.train( data="path/to/your/coco128.yaml", # 替换为实际的数据集配置文件绝对路径 epochs=100, imgsz=640 ) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值