问题描述
求一个无序数组的中位数。
如:{2,5,4,9,3,6,8,7,1}的中位数为5,{2,5,4,9,3,6,8,7,1,0}的中位数为4和5。
要求:不能使用排序,时间复杂度尽可能低。
提示:考虑堆或者快排思想解决
方法1:堆
思路1:
分析:将数据平均分配到最大堆和最小堆中,并且保证最小堆中的数据存放的数据都比最大堆中是数据大,那么此时最小堆堆顶的元素一定是中位数。
那么如何保证最小堆中的元素,都比大堆中的元素大。
(1)遍历数组,将第i个数插入堆中,i为奇数时,插入最小堆,i为偶数时插入最大堆。(最大堆的插入的数据比较大)
(2)每次插入时,将最大堆和最小堆的堆顶交换
void GetMid(int arr[],int size)
{
priority_queue<int> max_heap;
priority_queue< int, vector<int>, greater<int> > min_heap;
for (int i = 0; i < size; ++i)
{
//i是从0开始的,所以max存放的数据比较多
if ((i & 1) == 1)
min_heap.push(arr[i]);
else
max_heap.push(arr[i]);
//每次交换最大堆和最小堆中的数据,保证最小堆中的数据大于最大堆中
if (!min_heap.empty() && !max_heap.empty())
{
int temp = min_heap.top();
min_heap.pop();
max_heap.push(temp);
temp = max_heap.top();
max_heap.pop();
min_heap.push(temp);
}
}
if ((size & 1)== 0)//偶数
cout << "中位数:" << max_heap.top() << " " << min_heap.top() << endl;
else
cout << "中位数:" << max_heap.top() << endl;
}
思路2:
(1)将前(n+1)/2个元素调整为一个小顶堆,
(2)对后续的每一个元素,和堆顶比较,如果小于等于堆顶,丢弃之,取下一个元素。 如果大于堆顶,用该元素取代堆顶,调整堆,取下一元素。重复这个步骤
(3) 当遍历完所有元素之后,堆顶即是中位数。
void GetMid2(int arr[],int size)
{
priority_queue< int, vector<int>, greater<int> > min_heap;
int count = (size + 1) >> 1;
//存放count个数,比如5个元素,存放3个
for (int i = 0; i <= count; ++i)
min_heap.push(arr[i]);
for (int i = count + 1; i < size; ++i)
{
int temp = min_heap.top();
if (arr[i] > temp)
{
min_heap.pop();
min_heap.push(arr[i]);
}
}
if ((size & 1) == 1)//奇数
{
min_heap.pop();
cout << "中位数:" << min_heap.top() << endl;
}
else
{
int tmp = min_heap.top();
min_heap.pop();
cout << "中位数:" << tmp <<" "<< min_heap.top() << endl;
}
}
方法2、快排
快速排序之所以得名”快排”,绝非浪得虚名!因为快排就是一种分治排序法!
同样,找中位数也可以用快排分治的思想。具体如下:
任意挑一个元素,以改元素为支点,划分集合为两部分,如果左侧集合长度恰为 (n-1)/2,那么支点恰为中位数。如果左侧长度<(n-1)/2, 那么中位点在右侧,反之,中位数在左侧。 进入相应的一侧继续寻找中位点。
这种方法很快,但是在最坏的情况下时间复杂度为O(N^2), 不过平均时间复杂度好像是O(N)。
//快排方法,分治思想
//挖坑法
int PartSort(int arr[], int left,int right)
{
int key = arr[right];
while (left < right)
{
//key右边,先从左找比key值大
while (left < right && arr[left] <= key)
++left;
if (left < right)
{
arr[right] = arr[left];
--right;
}
//从右找比key小
while (left < right && arr[right] >= key)
--right;
if (left < right)
{
arr[left] = arr[right];
++left;
}
}
arr[left] = key;
return left;
}
void GetMid3(int arr[],int size)
{
int left = 0;
int right = size - 1;
int mid = size / 2;
int div = PartSort(arr, left, right);
while (div != mid)
{
if (div < mid)//右半区间
{
div = PartSort(arr, div + 1, right);
}
else
{
div = PartSort(arr, left, div - 1);
}
}
cout << "中位数" << arr[div] << endl;
}