手写数据集分类一般都被用来当做tensorflow入门的教程。当然啦,神经网络一般分为全连接层(FC),卷积层(CNN)和序列模型(RNN),这里先用全连接层做一个分类。
这里用到的数据集是MNIST,封装在tensorflow中。使用全连接层中做一个多分类问题。
我就把之前写的代码贴上来吧。
# 用tensorflow 导入数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
# 权值初始化
def weight_variable(shape):
# 用正态分布来初始化权值
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
# 本例中用relu激活函数,所以用一个很小的正偏置较好
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
# input_layer
X_ = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# FC1
W_fc1 = weight_variable([784, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(X_, W_fc1) + b_fc1)
# FC2
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_pre = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 1.损失函数:cross_entropy
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_pre)) # y_ 中只有标签所在的那一类是 1, 其余全部都是0.
# 2.优化函数:AdamOptimizer, 优化速度要比 GradientOptimizer 快很多
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy)
# 3.预测结果评估
# 预测值中最大值(1)即分类结果,是否等于原始标签中的(1)的位置。argmax()取最大值所在的下标
correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始运行
sess.run(tf.global_variables_initializer())
# 这大概迭代了不到 10 个 epoch, 训练准确率已经达到了0.98
for i in range(5000):
X_batch, y_batch = mnist.train.next_batch(batch_size=100)
train_step.run(feed_dict={X_: X_batch, y_: y_batch})
if (i+1) % 200 == 0:
train_accuracy = accuracy.eval(feed_dict={X_: mnist.train.images, y_: mnist.train.labels})
print "step %d, training acc %g" % (i+1, train_accuracy)
if (i+1) % 1000 == 0:
test_accuracy = accuracy.eval(feed_dict={X_: mnist.test.images, y_: mnist.test.labels})
print "= " * 10, "step %d, testing acc %g" % (i+1, test_accuracy)