欧拉函数的线性筛法

    该算法在可在线性时间内筛素数的同时求出所有数的欧拉函数。

    需要用到如下性质(p为质数):

    1. phi(p)=p-1   因为质数p除了1以外的因数只有p,故1至p的整数只有p与p不互质

    2. 如果i mod p = 0, 那么phi(i * p)=p * phi(i)  证明如下

 

 

    (上述证明存在bug。。感谢@PrimaryOIer指教)

    上面的过程证明了从区间[1,i]->[i+1,i+i],若整数n不与i互质,n+i依然与i不互质。下面给出另一个证明:若整数n与i互质,n+i与i依然互质

 

 

 

    3.若i mod p ≠0,  那么phi(i * p)=phi(i) * (p-1)

        i mod p 不为0且p为质数, 所以i与p互质, 那么根据欧拉函数的积性phi(i * p)=phi(i) * phi(p) 其中phi(p)=p-1即第一条性质

参考模板代码:

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

#define debug(x) cout <<'[' <<x <<']' <<endl;
const int maxn = 1e6 + 7;
int n, m;
int v[maxn], p[maxn], phi[maxn];
long long sum[maxn];

void euler()
{
    m = 0;
    memset(v, 0, sizeof(v));
    memset(sum, 0, sizeof(sum));
    for(int i = 2; i < maxn; i++)
    {
        if(v[i] == 0)
        {
            v[i] = i;
            p[m++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0; j < m; j++)
        {
            if(p[j] > v[i] || p[j] > maxn / i)
                break;
            v[i * p[j]] = p[j];
            phi[i * p[j]] = phi[i] * (i % p[j] ? p[j] - 1 : p[j]);
        }
    }


//下面过程为求前缀和,求欧拉函数时可不引用,只用phi数组即可
    phi[0] = phi[1] = 0;
    for(int i = 1; i < maxn; i++)
    {
        sum[i] = sum[i - 1] + phi[i];
    }
}

int main()
{
    euler();
    while(~scanf("%d", &n) && n)
    {
        debug(phi[n]);
        printf("%lld\n", sum[n]);
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值