常见经典排序算法代码实现+演示
一、概述
1、算法分类
十种常见排序算法可以分为两大类:
- 比较类排序: 通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序;
- 非比较类排序: 不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序;
2、算法复杂度
3、相关概念
稳定: 如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定: 如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
时间复杂度: 对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
空间复杂度: 是指算法在计算机
内执行时所需存储空间的度量,它也是数据规模n的函数。
二、算法详解
1、冒泡排序
- 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述
- 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
针对所有的元素重复以上的步骤,除了最后一个;
重复步骤1~3,直到排序完成。
1.2 动图演示
1.3 代码实现
function bubbleSort(arr) {
var len = arr.length;
for(var i = 0; i < len - 1; i++) {
for(var j = 0; j < len - 1 - i; j++) {
if(arr[j] > arr[j+1]) {
// 相邻元素两两对比
var temp = arr[j+1]; // 元素交换
arr[j+1] = arr[j];
arr[j] = temp;
}
}
}
return arr;
}
2、选择排序(Selection Sort)
- 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
2.1 算法描述
-
n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:
-
初始状态:无序区为R[1…n],有序区为空;
第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
n-1趟结束,数组有序化了。
2.2 动图演示
2.3 代码实现
function selectionSort(arr) {
var len = arr.length;
var minIndex, temp;
for(var i = 0; i < len - 1; i++) {
minIndex = i;
for(var j = i + 1; j < len; j++) {
if(arr[j] < arr[minIndex]) {
// 寻找最小的数
minIndex = j; // 将最小数的索引保存
}
}
temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
}
return arr;
}
2.4 算法分析
- 表现最稳定的排序算法之一,因为无论什么数据进去都是 O ( n 2 ) O(n^{2}) O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。
3、插入排序(Insertion Sort)
- 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
3.1 算法描述
-
一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:
-
从第一个元素开始,该元素可以认为已经被排序;
取出下一个元素,在已经排序的元素序列中从后向前扫描;
如果该元素(已排序)大于新元素,将该元素移到下一位置;
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
将新元素插入到该位置后;
重复步骤2~5。
3.2 动图演示
3.2 代码实现
function insertionSort(arr) {
var len = arr.length;
var preIndex, current;
for(var i = 1; i < len; i++) {
preIndex = i - 1;
current = arr[i];
while(preIndex >= 0 && arr[preIndex] > current) {
arr[preIndex + 1] = arr[preIndex];
preIndex--;
}
arr[preIndex + 1] = current;
}
return arr;
}