常见经典排序算法代码实现+演示

本文详细介绍了十大经典排序算法,包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序。通过对算法描述、动图演示和代码实现的讲解,帮助读者理解各种排序算法的原理和应用场景,其中稳定性和时间复杂度是评估排序算法的重要指标。
摘要由CSDN通过智能技术生成

一、概述

1、算法分类

十种常见排序算法可以分为两大类:

  1. 比较类排序: 通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序;
  2. 非比较类排序: 不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序;
    各类排序算法

2、算法复杂度

算法复杂度

3、相关概念

稳定: 如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定: 如果a原本在b的前面,而a=b,排序之后 a 可能会出现在 b 的后面。
时间复杂度: 对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。
空间复杂度: 是指算法在计算机
内执行时所需存储空间的度量,它也是数据规模n的函数。

二、算法详解

1、冒泡排序

  • 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述
  • 比较相邻的元素。如果第一个比第二个大,就交换它们两个;
    对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;
    针对所有的元素重复以上的步骤,除了最后一个;
    重复步骤1~3,直到排序完成。
1.2 动图演示

冒泡排序

1.3 代码实现
function bubbleSort(arr) {
   
    var len = arr.length;
    for(var i = 0; i < len - 1; i++) {
   
        for(var j = 0; j < len - 1 - i; j++) {
   
            if(arr[j] > arr[j+1]) {
           // 相邻元素两两对比
                var temp = arr[j+1];        // 元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

2、选择排序(Selection Sort)

  • 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
2.1 算法描述
  • n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下:

  • 初始状态:无序区为R[1…n],有序区为空;
    第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1…i-1]和R(i…n)。该趟排序从当前无序区中-选出关键字最小的记录 R[k],将它与无序区的第1个记录R交换,使R[1…i]和R[i+1…n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区;
    n-1趟结束,数组有序化了。

2.2 动图演示

选择排序

2.3 代码实现
function selectionSort(arr) {
   
    var len = arr.length;
    var minIndex, temp;
    for(var i = 0; i < len - 1; i++) {
   
        minIndex = i;
        for(var j = i + 1; j < len; j++) {
   
            if(arr[j] < arr[minIndex]) {
        // 寻找最小的数
                minIndex = j;                 // 将最小数的索引保存
            }
        }
        temp = arr[i];
        arr[i] = arr[minIndex];
        arr[minIndex] = temp;
    }
    return arr;
} 
2.4 算法分析
  • 表现最稳定的排序算法之一,因为无论什么数据进去都是 O ( n 2 ) O(n^{2}) O(n2)的时间复杂度,所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间了吧。理论上讲,选择排序可能也是平时排序一般人想到的最多的排序方法了吧。

3、插入排序(Insertion Sort)

  • 插入排序(Insertion-Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
3.1 算法描述
  • 一般来说,插入排序都采用in-place在数组上实现。具体算法描述如下:

  • 从第一个元素开始,该元素可以认为已经被排序;
    取出下一个元素,在已经排序的元素序列中从后向前扫描;
    如果该元素(已排序)大于新元素,将该元素移到下一位置;
    重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
    将新元素插入到该位置后;
    重复步骤2~5。

3.2 动图演示

在这里插入图片描述

3.2 代码实现
function insertionSort(arr) {
   
    var len = arr.length;
    var preIndex, current;
    for(var i = 1; i < len; i++) {
   
        preIndex = i - 1;
        current = arr[i];
        while(preIndex >= 0 && arr[preIndex] > current) {
   
            arr[preIndex + 1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex + 1] = current;
    }
    return arr;
}
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值