麒麟V10 安装cuda12.1,Anaconda3,python3.11,pytorch2.4.1

 

硬件配置

型号:浪潮CS5260H2

CPU:(海光),架构x86 Hygon C86 5380 16-core Processor

GPU:Tesla T4

RAID卡:pm8204

网卡信息:网讯 WX1860A2 

命令输出如下:

(base) [root@localhost ~]# lshw -c network
  *-network:0
       description: Ethernet interface
       product: WX1860A2 Gigabit Ethernet Controller
       vendor: Beijing Wangxun Technology Co., Ltd.
       physical id: 0
       bus info: pci@0000:01:00.0
       logical name: em1
       version: 01
       serial: 9c:c2:c4:61:7a:df
       size: 1Gbit/s
       capacity: 1Gbit/s
       width: 64 bits

系统安装

前期系统安装步骤省略,使用ventoy刻录U盘,下载镜像后,拷贝进入U盘,启动安装就可

系统版本

(base) [root@localhost ~]# nkvers
############## Kylin Linux Version #################
Release:
Kylin Linux Advanced Server release V10 (Lance)

Kernel:
4.19.90-52.22.v2207.ky10.x86_64

Build:
Kylin Linux Advanced Server
release V10 (SP3) /(Lance)-x86_64-Build23/20230324
#################################################
(base) [root@localhost ~]#

 

内核版本

(base) [root@localhost ~]# uname -a
Linux localhost.localdomain 4.19.90-52.22.v2207.ky10.x86_64 #1 SMP Tue Mar 14 12:19:10 CST 2023 x86_64 x86_64 x86_64 GNU/Linux
(base) [root@localhost ~]# rpm -qa | grep kernel
kernel-modules-extra-4.19.90-52.22.v2207.ky10.x86_64
kernel-tools-4.19.90-52.22.v2207.ky10.x86_64
kernel-core-4.19.90-52.22.v2207.ky10.x86_64
kernel-devel-4.19.90-52.22.v2207.ky10.x86_64
kernel-tools-libs-4.19.90-52.22.v2207.ky10.x86_64
kernel-headers-4.19.90-52.22.v2207.ky10.x86_64
kernel-4.19.90-52.22.v2207.ky10.x86_64
kernel-modules-4.19.90-52.22.v2207.ky10.x86_64
(base) [root@localhost ~]#

屏蔽nouveau,启动模式修改

编辑 /lib/modprobe.d/dist-blacklist.conf

#注释 nvidiafb
#blacklist nvidiafb
#添加以下两行
blacklist nouveau
options nouveau modeset=0

重建initramfs

 

mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
dracut /boot/initramfs-$(uname -r).img $(uname -r)

修改系统启动模式

查看当前启动模式
systemctl  get-default

设置为命令行模式
systemctl set-default multi-user.target

重启

执行reboot

 

cuda依赖配置与安装

安装gcc,如系统自带此步骤可省略

 

yum install gcc  gcc-c++ 

检查gcc版本

(base) [root@localhost ~]# gcc --version
gcc (GCC) 7.3.0
Copyright © 2017 Free Software Foundation, Inc.
本程序是自由软件;请参看源代码的版权声明。本软件没有任何担保;
包括没有适销性和某一专用目的下的适用性担保。
(base) [root@localhost ~]#

 

检查内核版本

(base) [root@localhost ~]# ls /boot | grep vmlinu
vmlinuz-0-rescue-4f9a6ce3aaba4101b848f3a5814fe999
vmlinuz-4.19.90-52.22.v2207.ky10.x86_64
(base) [root@localhost ~]#
(base) [root@localhost ~]# rpm -aq | grep kernel-devel
kernel-devel-4.19.90-52.22.v2207.ky10.x86_64
(base) [root@localhost ~]# rpm -aq | grep kernel
kernel-modules-extra-4.19.90-52.22.v2207.ky10.x86_64
kernel-tools-4.19.90-52.22.v2207.ky10.x86_64
kernel-core-4.19.90-52.22.v2207.ky10.x86_64
kernel-devel-4.19.90-52.22.v2207.ky10.x86_64
kernel-tools-libs-4.19.90-52.22.v2207.ky10.x86_64
kernel-headers-4.19.90-52.22.v2207.ky10.x86_64
kernel-4.19.90-52.22.v2207.ky10.x86_64
kernel-modules-4.19.90-52.22.v2207.ky10.x86_64
(base) [root@localhost ~]#

如缺少进行yum安装或者升级内核保持一致即可,安装cuda不一会导致报错

cuda安装

官方文档CUDA按章配置可参考我另一篇博客:

Ubuntu22.04.4安装配置CUDA12.5,Cdnn官方详细版本_ubuntu 22.04.4-CSDN博客

这里麒麟系统我下载的Centos7的二进制包,执行安装即可

cuda历史版本及文档如下链接:

https://developer.nvidia.com/cuda-toolkit-archive

脚本执行如下:

wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run
sudo sh cuda_12.1.0_530.30.02_linux.run

安装python3.11

安装依赖
 

yum -y install epel-release wget make cmake gcc bzip2-devel libffi-devel zlib-devel

 

安装所有开发工具:

sudo yum -y groupinstall "Development Tools"

检查openssl版本

(base) [root@localhost ~]# openssl  version
OpenSSL 3.0.15 3 Sep 2024 (Library: OpenSSL 3.0.15 3 Sep 2024)
(base) [root@localhost ~]#

源码下载

wget https://www.python.org/ftp/python/3.11.2/Python-3.11.2.tgz

解压

tar xvf Python-3.11.2.tgz

目录输出如下
(base) [root@localhost ~]# cd Python-3.11.2/
(base) [root@localhost Python-3.11.2]# ls
aclocal.m4         config.guess   config.sub    Doc      install-sh       LICENSE   Makefile.pre     Modules  PC        Programs        pyconfig.h.in  python-config     README.rst
_bootstrap_python  config.log     configure     Grammar  Lib              Mac       Makefile.pre.in  Objects  PCbuild   pybuilddir.txt  python         python-config.py  setup.py
build              config.status  configure.ac  Include  libpython3.11.a  Makefile  Misc             Parser   platform  pyconfig.h      Python         python-gdb.py     Tools
(base) [root@localhost Python-3.11.2]#

切换目录,编译安装

 

LDFLAGS="${LDFLAGS} -Wl,-rpath=/usr/local/openssl/lib" ./configure --with-openssl=/usr/local/openssl &&  make  

安装完成

 

 make altinstall

安装完成替换软连接

unlink  /usr/bin/python
unlink  /usr/bin/python3
link -s  /usr/local/bin/python3.11 /usr/bin/python
link -s  /usr/local/bin/python3.11 /usr/bin/python3

(base) [root@localhost Python-3.11.2]# python
Python 3.12.7 | packaged by Anaconda, Inc. | (main, Oct  4 2024, 13:27:36) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

安装Anaconda 

下载安装脚本

wget https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Linux-x86_64.sh

网页显示如下可选其他版本:地址如下https://repo.anaconda.com/archive/

e0ac447c817a44b686b1fb0b896a29c9.png

安装

bash  Anaconda3-2024.10-1-Linux-x86_64.sh

输出信息如下

Version 4.0 | Last Modified: March 31, 2024 | ANACONDA TOS


Do you accept the license terms? [yes|no]
>>>   yes

Anaconda3 will now be installed into this location:
/root/anaconda3

  - Press ENTER to confirm the location
  - Press CTRL-C to abort the installation
  - Or specify a different location below

[/root/anaconda3] >>>
PREFIX=/root/anaconda3
Unpacking payload ...

Installing base environment...


Downloading and Extracting Packages:


## Package Plan ##
added / updated specs:
    - defaults/linux-64::_anaconda_depends==2024.10=py312_mkl_0[md5=c9ba3a4910c6668be6c04058513aca5d]
    - defaults/linux-64::_libgcc_mutex==0.1=main[md5=c3473ff8bdb3d124ed5ff11ec380d6f9]
    - defaults/linux-64::_openmp_mutex==5.1=1_gnu[md5=71d281e9c2192cb3fa425655a8defb85]
    - defaults/linux-64::aiobotocore==2.12.3=py312h06a4308_0[md5=b54b2fa16e83039c4398d0b1d16c8cd9]
    - defaults/linux-64::aiohappyeyeballs==2.4.0=py312h06a4308_0[md5=305f03cf0cb08197bafad774073c8880]
    - defaults/linux-64::aiohttp==3.10.5=py312h5eee18b_0[md5=442b1f6b84684ca9bc6fdcd2d5ed7d40]


.....................................................................................




Downloading and Extracting Packages:

Preparing transaction: done
Executing transaction: done
installation finished.
Do you wish to update your shell profile to automatically initialize conda?
This will activate conda on startup and change the command prompt when activated.
If you'd prefer that conda's base environment not be activated on startup,
   run the following command when conda is activated:

conda config --set auto_activate_base false

You can undo this by running `conda init --reverse $SHELL`? [yes|no]
[no] >>> yes
no change     /root/anaconda3/condabin/conda
no change     /root/anaconda3/bin/conda
no change     /root/anaconda3/bin/conda-env
no change     /root/anaconda3/bin/activate
no change     /root/anaconda3/bin/deactivate
no change     /root/anaconda3/etc/profile.d/conda.sh
no change     /root/anaconda3/etc/fish/conf.d/conda.fish
no change     /root/anaconda3/shell/condabin/Conda.psm1
no change     /root/anaconda3/shell/condabin/conda-hook.ps1
no change     /root/anaconda3/lib/python3.12/site-packages/xontrib/conda.xsh
no change     /root/anaconda3/etc/profile.d/conda.csh
modified      /root/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

Thank you for installing Anaconda3!

安装完成

执行conda search torch查找包

(base) [root@localhost ~]# conda search torch
Loading channels: done
No match found for: torch. Search: *torch*
# Name                       Version           Build  Channel
_pytorch_select                  0.1           cpu_0  pkgs/main
_pytorch_select                  0.2           gpu_0  pkgs/main
diffusers-torch               0.11.0 py310h2f386ee_0  pkgs/main
diffusers-torch               0.11.0  py37hb070fc8_0  pkgs/main
diffusers-torch               0.11.0  py38hb070fc8_0  pkgs/main
diffusers-torch               0.11.0  py39hb070fc8_0  pkgs/main
diffusers-torch               0.18.2 py310h2f386ee_0  pkgs/main
diffusers-torch               0.18.2 py311h92b7b1e_0  pkgs/main
diffusers-torch               0.18.2 py312he106c6f_0  pkgs/main
diffusers-torch               0.18.2  py38h2f386ee_0  pkgs/main
diffusers-torch               0.18.2  py39h2f386ee_0  pkgs/main
diffusers-torch               0.30.3 py310h06a4308_0  pkgs/main
diffusers-torch               0.30.3 py311h06a4308_0  pkgs/main
diffusers-torch               0.30.3 py312h06a4308_0  pkgs/main
diffusers-torch               0.30.3  py38h06a4308_0  pkgs/main
diffusers-torch               0.30.3  py39h06a4308_0  pkgs/main
intel-extension-for-pytorch          1.12.1 py310h6a678d5_0  pkgs/main
intel-extension-for-pytorch          1.12.1  py38h6a678d5_0  pkgs/main
intel-extension-for-pytorch          1.12.1  py39h6a678d5_0  pkgs/main
pytorch                        0.2.0 py27cuda7.5cudnn5.1_0  pkgs/main
pytorch                        0.2.0 py27cuda7.5cudnn6.0_0  pkgs/main
pytorch                        0.2.0 py27cuda8.0cudnn5.1_0  pkgs/main
pytorch                        0.2.0 py27cuda8.0cudnn6.0_0  pkgs/main
pytorch                        0.2.0 py35cuda7.5cudnn5.1_0  pkgs/main
pytorch                        0.2.0 py35cuda7.5cudnn6.0_0  pkgs/main
pytorch                        0.2.0 py35cuda8.0cudnn5.1_0  pkgs/main
pytorch                        0.2.0 py35cuda8.0cudnn6.0_0  pkgs/main
pytorch                        0.2.0 py36cuda7.5cudnn5.1_0  pkgs/main
pytorch                        0.2.0 py36cuda7.5cudnn6.0_0  pkgs/main
pytorch                        0.2.0 py36cuda8.0cudnn5.1_0  pkgs/main
pytorch                        0.2.0 py36cuda8.0cudnn6.0_0  pkgs/main
pytorch                        0.3.0 py27cuda7.5cudnn6.0_0  pkgs/main
pytorch                        0.3.0 py27cuda8.0cudnn6.0_0  pkgs/main
pytorch                        0.3.0 py27cuda8.0cudnn7.0_0  pkgs/main
pytorch                        0.3.0 py35cuda7.5cudnn6.0_0  pkgs/main
pytorch                        0.3.0 py35cuda8.0cudnn6.0_0  pkgs/main

安装pytoch 

 

官网参考

https://pytorch.ac.cn/get-started/previous-versions/

Linux 和 Windows
# CUDA 11.8
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1  pytorch-cuda=11.8 -c pytorch -c nvidia
# CUDA 12.1
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia
# CUDA 12.4
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.4 -c pytorch -c nvidia
# CPU Only
conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 cpuonly -c pytorch

执行安装

conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia 

 

输出信息如下

(base) [root@localhost ~]# conda install pytorch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 pytorch-cuda=12.1 -c pytorch -c nvidia
Channels:
 - pytorch
 - nvidia
 - defaults
Platform: linux-64
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##

  environment location: /root/anaconda3

  added / updated specs:
    - pytorch-cuda=12.1
    - pytorch==2.4.1
    - torchaudio==2.4.1
    - torchvision==0.19.1


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    cuda-cudart-12.1.105       |                0         189 KB  nvidia
    cuda-cupti-12.1.105        |                0        15.4 MB  nvidia
    cuda-libraries-12.1.0      |                0           2 KB  nvidia
    cuda-nvrtc-12.1.105        |                0        19.7 MB  nvidia
    cuda-nvtx-12.1.105         |                0          57 KB  nvidia
    cuda-opencl-12.6.77        |                0          25 KB  nvidia
    cuda-runtime-12.1.0        |                0           1 KB  nvidia
    cuda-version-12.6          |                3          16 KB  nvidia
    ffmpeg-4.3                 |       hf484d3e_0         9.9 MB  pytorch
    gmp-6.2.1                  |       h295c915_3         544 KB
    gnutls-3.6.15              |       he1e5248_0         1.0 MB
    lame-3.100                 |       h7b6447c_0         323 KB
    libcublas-12.1.0.26        |                0       329.0 MB  nvidia
    libcufft-11.0.2.4          |                0       102.9 MB  nvidia
    libcufile-1.11.1.6         |                0         895 KB  nvidia
    libcurand-10.3.7.77        |                0        39.7 MB  nvidia
    libcusolver-11.4.4.55      |                0        98.3 MB  nvidia
    libcusparse-12.0.2.55      |                0       163.0 MB  nvidia
    libidn2-2.3.4              |       h5eee18b_0         146 KB
    libjpeg-turbo-2.0.0        |       h9bf148f_0         950 KB  pytorch
    libnpp-12.0.2.50           |                0       139.8 MB  nvidia
    libnvjitlink-12.1.105      |                0        16.9 MB  nvidia
    libnvjpeg-12.1.1.14        |                0         2.9 MB  nvidia
    libtasn1-4.19.0            |       h5eee18b_0          63 KB
    libunistring-0.9.10        |       h27cfd23_0         536 KB
    llvm-openmp-14.0.6         |       h9e868ea_0         4.4 MB
    nettle-3.7.3               |       hbbd107a_1         809 KB
    openh264-2.1.1             |       h4ff587b_0         711 KB
    pytorch-2.4.1              |py3.12_cuda12.1_cudnn9.1.0_0        1.35 GB  pytorch
    pytorch-cuda-12.1          |       ha16c6d3_6           7 KB  pytorch
    pytorch-mutex-1.0          |             cuda           3 KB  pytorch
    torchaudio-2.4.1           |      py312_cu121         6.4 MB  pytorch
    torchtriton-3.0.0          |            py312       233.5 MB  pytorch
    torchvision-0.19.1         |      py312_cu121         8.5 MB  pytorch
    ------------------------------------------------------------
                                           Total:        2.52 GB

The following NEW packages will be INSTALLED:

  cuda-cudart        nvidia/linux-64::cuda-cudart-12.1.105-0
  cuda-cupti         nvidia/linux-64::cuda-cupti-12.1.105-0
  cuda-libraries     nvidia/linux-64::cuda-libraries-12.1.0-0
  cuda-nvrtc         nvidia/linux-64::cuda-nvrtc-12.1.105-0
  cuda-nvtx          nvidia/linux-64::cuda-nvtx-12.1.105-0
  cuda-opencl        nvidia/linux-64::cuda-opencl-12.6.77-0
  cuda-runtime       nvidia/linux-64::cuda-runtime-12.1.0-0
  cuda-version       nvidia/noarch::cuda-version-12.6-3
  ffmpeg             pytorch/linux-64::ffmpeg-4.3-hf484d3e_0
  gmp                pkgs/main/linux-64::gmp-6.2.1-h295c915_3
  gnutls             pkgs/main/linux-64::gnutls-3.6.15-he1e5248_0
  lame               pkgs/main/linux-64::lame-3.100-h7b6447c_0
  libcublas          nvidia/linux-64::libcublas-12.1.0.26-0
  libcufft           nvidia/linux-64::libcufft-11.0.2.4-0
  libcufile          nvidia/linux-64::libcufile-1.11.1.6-0
  libcurand          nvidia/linux-64::libcurand-10.3.7.77-0
  libcusolver        nvidia/linux-64::libcusolver-11.4.4.55-0
  libcusparse        nvidia/linux-64::libcusparse-12.0.2.55-0
  libidn2            pkgs/main/linux-64::libidn2-2.3.4-h5eee18b_0
  libjpeg-turbo      pytorch/linux-64::libjpeg-turbo-2.0.0-h9bf148f_0
  libnpp             nvidia/linux-64::libnpp-12.0.2.50-0
  libnvjitlink       nvidia/linux-64::libnvjitlink-12.1.105-0
  libnvjpeg          nvidia/linux-64::libnvjpeg-12.1.1.14-0
  libtasn1           pkgs/main/linux-64::libtasn1-4.19.0-h5eee18b_0
  libunistring       pkgs/main/linux-64::libunistring-0.9.10-h27cfd23_0
  llvm-openmp        pkgs/main/linux-64::llvm-openmp-14.0.6-h9e868ea_0
  nettle             pkgs/main/linux-64::nettle-3.7.3-hbbd107a_1
  openh264           pkgs/main/linux-64::openh264-2.1.1-h4ff587b_0
  pytorch            pytorch/linux-64::pytorch-2.4.1-py3.12_cuda12.1_cudnn9.1.0_0
  pytorch-cuda       pytorch/linux-64::pytorch-cuda-12.1-ha16c6d3_6
  pytorch-mutex      pytorch/noarch::pytorch-mutex-1.0-cuda
  torchaudio         pytorch/linux-64::torchaudio-2.4.1-py312_cu121
  torchtriton        pytorch/linux-64::torchtriton-3.0.0-py312
  torchvision        pytorch/linux-64::torchvision-0.19.1-py312_cu121


Proceed ([y]/n)? y


Downloading and Extracting Packages:

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(base) [root@localhost ~]#

 

图片信息截图

ea144ce667e24a71ac6d9d1f03dbf2ba.png

93431692a02f45ce984a1bacea6c89e6.png

 

5db6b0fd5b354b6cbb0d7e001bce713d.png

完装完成,验证

检查torch版本

检查cuda版本

检查CUDA与PyTorch版本的匹配问题

(base) [root@localhost ~]# python
Python 3.12.7 | packaged by Anaconda, Inc. | (main, Oct  4 2024, 13:27:36) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
2.4.1
>>> print(torch.cuda.is_available())
True
>>> print(torch.version.cuda)
12.1
>>>

 

输出结果正确

执行conda list 查看torch包信息

 

执行conda list | grep torch 

(base) [root@localhost ~]# conda list | grep torch
ffmpeg                    4.3                  hf484d3e_0    pytorch
libjpeg-turbo             2.0.0                h9bf148f_0    pytorch
pytorch                   2.4.1           py3.12_cuda12.1_cudnn9.1.0_0    pytorch
pytorch-cuda              12.1                 ha16c6d3_6    pytorch
pytorch-mutex             1.0                        cuda    pytorch
torchaudio                2.4.1               py312_cu121    pytorch
torchtriton               3.0.0                     py312    pytorch
torchvision               0.19.1              py312_cu121    pytorch
(base) [root@localhost ~]#

 

c1ff350790b344e19def1ffb5a9b99c6.png

 

至此,麒麟系统配置cuda,pytorch 配置完成,python里面调用GPU成功

 

ce846e6ca1df4518a2e1184a9826ae47.png

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值