🌟 前言
随着大语言模型(LLM)的普及,越来越多用户希望在本地部署模型以保护隐私、提升效率。本文将手把手教你如何在 Windows 10/11系统 上通过 Ollama 工具安装并运行 DeepSeek R1 模型。
🛠️ 第一步:安装Ollama
1. 下载Ollama安装包
- 官方地址:https://ollama.com/download
- 选择Windows版本:点击 “Download for Windows”,下载
OllamaSetup.exe
(约745MB)。 - 加速下载建议:若浏览器速度慢,复制链接到迅雷或IDM下载。。
2. 安装Ollama
- 默认安装路径:双击
OllamaSetup.exe
,点击 Install,默认安装到C:\Program Files\Ollama
。 - 自定义安装路径:
- 打开命令行(Win+R → 输入
cmd
)。 - 输入命令:
OllamaSetup.exe /DIR=D:\Ollama
- 确认路径后点击 Install。
- 打开命令行(Win+R → 输入
3. 验证安装
- 命令行验证:
若输出类似ollama --version
ollama version 0.1.34
,则安装成功。 - 图形化验证:右下角任务栏应出现 羊驼图标(若未显示,展开状态栏检查)。
🔧 第二步:下载并运行DeepSeek模型
1. 选择模型版本
DeepSeek R1 提供多个版本,根据硬件配置选择:
模型版本 | 参数量 | 显存需求 | 推荐配置 |
---|---|---|---|
deepseek-r1:1.5b | 15亿 | 4GB | 8GB内存 + 10GB磁盘 |
deepseek-r1:7b | 70亿 | 8GB | 16GB内存 + 20GB磁盘 |
deepseek-r1:14b | 140亿 | 12GB | 32GB内存 + 50GB磁盘 |
新手推荐:选择
deepseek-r1:1.5b
以降低硬件要求。
2. 下载模型
- 命令行执行:
ollama run deepseek-r1:1.5b
- 下载过程说明:
自定义模型文件下载地址看 第四步
- Ollama 会自动从远程仓库下载模型文件(约2-3GB),并解压到默认路径:
C:\Users\<用户名>\.ollama\models
。 - 下载中断处理:若下载失败,重复运行上述命令,Ollama 会自动续传。
3. 验证模型安装
- 查看已安装模型:
输出应包含ollama list
deepseek-r1:1.5b
。
🧪 第三步:使用DeepSeek模型
1. 命令行交互
- 启动模型:
ollama run deepseek-r1:1.5b
- 对话示例:
模型会返回详细回答,首次响应约需3-5秒。>>> 如何学习Python?
退出对话:Ctrl + d 或者 /bye
2. 通过API调用模型
- REST API 示例:
curl http://localhost:11434/api/generate -d '{ "model": "deepseek-r1:1.5b", "prompt": "如何学习Python?", "stream": false }'
🗂️ 第四步:更改模型存储路径(可选)
1. 设置环境变量
- 操作步骤:
- 右键 此电脑 → 属性 → 高级系统设置 → 环境变量。
- 在 系统变量 中点击 新建:
- 变量名:
OLLAMA_MODELS
- 变量值:
E:\ollama\OllamaModels
(自定义路径)。
- 变量名:
- 重启电脑使设置生效。
2. 验证路径更改
- 重新运行
ollama run deepseek-r1:1.5b
,模型会下载到新路径。
📦 第五步:安装图形化界面(可选)
1. 安装Docker
- 下载地址:Docker Desktop
- 安装步骤:
- 启用 WSL 2 和 Hyper-V(需管理员权限)。
- 安装完成后启动 Docker Desktop。
2. 部署Chatbox
- 命令行执行:
docker run -d --name=maxkb --restart=always -p 8080:8080 -v C:/maxkb:/var/lib/postgresql/data -v C:/python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb
- 访问地址:
http://localhost:8080
3. 部署Open-WebUI
- 命令行执行:
docker run -d --name open-webui -p 3000:8080 -e OLLAMA_HOST=http://localhost:11434 open-webui/open-webui
- 访问地址:
http://localhost:3000
⚠️ 常见问题与解决方案
1. 下载失败
- 解决方法:
- 重复运行
ollama run deepseek-r1:1.5b
。 - 更换 DNS(如
8.8.8.8
)或使用代理。
- 重复运行
2. 磁盘空间不足
- 解决方法:
- 删除旧模型:
ollama rm deepseek-r1:1.5b
- 删除旧模型:
3. 安全性建议
- 本地部署:默认监听
http://localhost:11434
,无需公网暴露。 - 远程访问:若需开放,配置防火墙和身份验证(如 Nginx 反向代理)。
📚 附录:Ollama常用命令
命令 | 描述 |
---|---|
ollama serve | 启动 Ollama 服务 |
ollama create | 从 Modelfile 创建模型 |
ollama show | 显示模型信息 |
ollama run | 运行模型 |
ollama stop | 停止正在运行的模型 |
ollama pull | 拉取模型 |
ollama list | 列出所有已下载模型 |
ollama ps | 列出当前运行的模型 |
ollama cp | 复制模型 |
ollama rm | 删除模型 |
ollama help | 获取命令帮助 |
✅ 总结
通过本文的步骤,你可以在本地快速部署 DeepSeek 模型并实现离线使用。以下是关键点总结:
- 核心流程:安装 Ollama → 下载 DeepSeek 模型 → 使用命令行或 API 交互。
- 推荐配置:选择
1.5b
模型以降低硬件需求。 - 扩展功能:通过 Docker 部署图形化界面(如 Chatbox 或 Open-WebUI)。