python网络爬虫爬取房价信息

本文介绍如何使用Python爬虫从房天下网站抓取成都地区新房的小区名称、详细地址、房源状态和价格信息。通过分析HTML代码,运用BeautifulSoup库实现数据解析与提取。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

爬取房天下(http://newhouse.cd.fang.com/house/s/)成都地区的新房信息。

打开http://newhouse.cd.fang.com/house/s/,F12进入控制台

### 如何使用爬虫抓取房价数据 为了实现房价数据的抓取,可以采用多种工具和技术栈来完成这一任务。以下是详细的说明: #### 使用 Python 的 Scrapy 工具 Scrapy 是一种强大的爬虫框架,适用于大规模的数据采集工作。可以通过编写 Spider 脚本来定义爬取逻辑,并利用命令行参数保存结果到文件中[^2]。 例如,在抓取链家网上的二手房信息时,可以创建一个名为 `summ_info.py` 的脚本,并通过以下命令运行它: ```bash scrapy runspider spiders/summ_info.py -a query=ershoufang/ie2y4l2l3a3a4p5 -o ./data/result.csv ``` 此命令会启动爬虫程序并将输出存储为 CSV 文件以便后续处理。 #### 利用 Selenium 进行动态页面解析 当目标网站依赖 JavaScript 动态加载内容时,仅依靠传统的 HTTP 请求可能无法有效获取所需数据。此时可考虑引入 Selenium 来模拟真实用户的浏览行为[^5]。 下面是一个简单的 Selenium 实现案例用于访问指定 URL 并提取 HTML 内容: ```python from selenium import webdriver driver = webdriver.Firefox() # 或者其他支持的浏览器驱动器 url = 'https://www.example-real-estate-site.com/listings' driver.get(url) # 假设价格位于特定 class 下面 prices_elements = driver.find_elements_by_class_name('price-class') for price_element in prices_elements: print(price_element.text.strip()) driver.quit() ``` 这段代码展示了如何初始化 WebDriver 对象连接至 Firefox 浏览器实例化对象;接着导航到给定网址读取 DOM 结构中的元素节点值最后关闭 session 链接释放资源占用情况下的操作流程描述。 #### 数据清洗与初步探索性分析 一旦成功收集到了原始数据集之后,则需要对其进行必要的预处理步骤比如去除重复项填补缺失字段转换数值型变量等等然后再运用 Pandas 库来进行基本统计汇总计算绘制图表辅助理解整体趋势特征等方面的工作[^1]。 假设我们已经得到了一份包含多个列名如 location, size_sqm, age_years 等在内的 DataFrame 表格形式表示每套房子的具体属性详情列表那么就可以执行如下所示的操作片段进一步挖掘潜在规律模式所在之处。 ```python import pandas as pd df = pd.read_csv('./data/result.csv') # 描述性统计数据概览 summary_stats = df.describe() # 绘制直方图查看分布状况 ax = df['size_sqm'].hist(bins=30) ax.set_title('House Sizes Distribution'); ``` 以上方法能够有效地帮助研究者们从海量杂乱无章的信息源里提炼出有意义的知识点供决策参考之需所用[^3]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

文宇肃然

精神和物质鼓励你选一个吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值