自动驾驶-预测笔记
文章平均质量分 91
记录阅读一些论文的随笔
海里的果
这个作者很懒,什么都没留下…
展开
-
轨迹预测经典论文之六:Rules of the Road: Predicting Driving Behavior with a Convolutional Model of Semantic Int
分享的论文年代实在是越来越久远了,这篇文章是2019年初的论文了,是4年前的论文。回顾这样的论文,也就是大致看看思路,回顾下当时论文的关注点。原创 2023-03-19 18:02:25 · 462 阅读 · 0 评论 -
轨迹预测论文之八: Vision-based Intention and Trajectory Prediction in Autonomous Vehicles: A Survey
摘要的意思就是“我是一篇综述,我批判性比较了最近两三年的预测模型,总结了常见的数据集和对应的评价方法”。引言部分中有以下一些总结(ps: 基本是边看边翻译,有条件还是自己看下原文):预测任务包括两个方面,一是其他道路参与者的意图,参与者包括车辆,行人,骑行人等,意图是指直行左转右转(这就是意图预测或者行为预测);第二个方面就是参与者的轨迹预测。预测任务表现好可以帮助planning模块,避免交通事故,提升安全性,许多公司都专门建立的预测的pipeline。原创 2023-04-09 21:43:31 · 1075 阅读 · 0 评论 -
轨迹预测论文之七:SCENE TRANSFORMER A UNIFIED ARCHITECTURE FOR PREDICTING MULTIPLE AGENT TRAJECTORIES
老文章分享多了,来看一篇预测领域比较新的论文,是2021年下半年的论文SCENE TRANSFORMER。视觉领域在VIT出来后的21年,各种变种的Vit如雨后春笋一般出现,迅速在视觉领域攻城掠地。到现在TRANSFORMER已经是各个领域最normal的一种结构了,预测领域也不例外。文章提出了一种对多目标轨迹预测的统一的框架,直观感觉,与之前最大的不同,就是大量使用attention结构进行信息交互。原创 2023-03-26 15:58:15 · 1807 阅读 · 0 评论 -
轨迹预测经典论文之五:MultiPath: Multiple Probabilistic Anchor Trajectory Hypotheses for Behavior Prediction
MultiPath2019年的一篇论文,也比较久远了,来自waymo,也是这个领域的一篇经典论文。这篇论文当时看的时候自己其实没有完全理解,似懂非懂,现在再回来回顾一下。其做法现在来看非常容易理解,文章认为轨迹的多模,或者说不确定新,来源于两部分,意图的不确定性和控制的不确定性。意图的不确定性,这部分,用trajectory anchor 解决, 在给定一个意图后,控制也会对未来的预测带来不确定性,这种不确定性认为在每个时刻都是服从正态分布的,这种不确定性就用参数化的与锚轨迹之间的offset来表示。原创 2023-03-19 13:31:35 · 2534 阅读 · 1 评论 -
轨迹预测经典论文之四:CoverNet: Multimodal Behavior Prediction using Trajectory Sets
添加链接描述趁着刚写完上篇,状态还在,快马加鞭,再回看一个2020年(这时代算是较古老了)的经典做多模轨迹预测的论文Covernet,文章思路不复杂,也是属于离散化,anchor-based,细节就不写太详细了,整体就算是回顾下预测领域data driven的一些发展历史吧。文章主要创新点,就在于把预测轨迹的问题,看作了一个离散轨迹簇下的分类问题(当然anchor-based这也不是首创)。这个离散轨迹,要保证对可能的状态空间的覆盖,也要满足车辆动力学方面的约束。原创 2023-03-18 21:57:26 · 992 阅读 · 0 评论 -
轨迹预测经典论文之三: HOME: Heatmap Output for future Motion Estimation
上篇讲了dense TNT,把sparse 输出转换为dense的,获得更多有用的信息,2021年也有一篇论文就是本文的HOME,也使用了dense的heatmap输出,有着相似的思想。不过这篇文章没有采用vectornet的编码形式,还是用的渲染的bev图作为encoder的输入。(Thomas还发表了GOHOME,改为了vector形式的输入,这是后话)。下面让我们看一下这篇论文是如何训练和利用heatmap的。原创 2023-03-18 18:20:33 · 1377 阅读 · 0 评论 -
轨迹预测经典论文之二 DenseTNT: End-to-end Trajectory Prediction from Dense Goal Sets
承接上篇的TNT,紧接着来回顾下Hang Zhao老师团队的Dense TNT。Dense TNT是21年发表的到现在一年半之久了,目前源码也放出来了(但比较乱, 建议还是不看了,理解思想最重要)它是在TNT基础上的改进。如摘要提到的那样,以前的anchor-based方法,需要预先定义好一个适合的预先撒goal点的方法,并且要设计相应的goal点选择算法(主要是为了得到多模的输出)。原创 2023-03-15 22:50:21 · 1296 阅读 · 1 评论 -
轨迹预测经典论文之一 TNT:Target-driveN Trajectory Prediction
车辆轨迹预测论文阅读原创 2023-03-12 18:43:22 · 3284 阅读 · 2 评论