In 2N - 1 boxes there are apples and oranges. Your task is to choose N boxes so, that they will contain not less than half of all the apples and not less than half of all the oranges.
The first input line contains one number T — amount of tests. The description of each test starts with a natural number N — amount of boxes. Each of the following 2N - 1 lines contains numbers ai and oi — amount of apples and oranges in the i-th box (0 ≤ ai, oi ≤ 109). The sum of N in all the tests in the input doesn't exceed 105. All the input numbers are integer.
For each test output two lines. In the first line output YES, if it's possible to choose N boxes, or NO otherwise. If the answer is positive output in the second line N numbers — indexes of the chosen boxes. Boxes are numbered from 1 in the input order. Otherwise leave the second line empty. Separate the numbers with one space.
2 2 10 15 5 7 20 18 1 0 0
YES 1 3 YES 1
这个题目还是很不错的,我通过这个题目学会了一种解决此类问题的思路,我本来以为是必须要用dp来解决的,但
仔细想想其实还是不必这样的啊,这个题目的意思是说求出n个箱子,使这n个箱子的橙子的和与苹果的和可以大于
苹果数与橙子数的一半。所以应该先进行排序,假如n=3,那么就有5个,
x1 y1(1)
x2 y2(1)
x3 y3(2)
x4 y4(2)
x5 y5 我们要在y1与y2之间挑出比较大的那个数,y3与y4之间挑出比较大的那个数,然后挑最后一个,这样加起来
我们就可以绝对可以保证x是足够到一半了,同时我们也调走了最多的y的一半。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; struct node { int a; int b; int index; }ua[2*100000+5]; int cmd(node x,node y) { return x.a<y.a; } int main() { int i,j,k; int T; int n; scanf("%d",&T); while(T--) { scanf("%d",&n); k=2*n-1; for(i=1;i<=k;i++) { scanf("%d%d",&ua[i].a,&ua[i].b); ua[i].index=i; } sort(ua+1,ua+1+k,cmd); printf("YES\n"); for(i=2;i<=k-1;i=i+2) { if(ua[i].b>ua[i-1].b) { printf("%d ",ua[i].index); } else { printf("%d ",ua[i-1].index); } } printf("%d\n",ua[k].index); } return 0; }