[bzoj4401]块的计数

题目大意

给定一颗树,对树进行树分块使得每块点数相同,求方案数

TLE算法

容易观察出,假如块大小定了,那么至多只有一种方案。
怎么分块呢?设size[x]表示x子树中还未被分块的节点数量。
像普通size一样求。
退出x时,如果size[x]=c即块大小,那么可以形成一块,size[x]清0。
最后若size[1]为0,代表分块成功。
复杂度n根号n,TLE

#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int maxn=1000000+10;
int size[maxn],h[maxn],go[maxn*2],next[maxn*2];
int i,j,k,l,t,n,m,tot,ans,c;
int read(){
    int x=0,f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9'){
        if (ch=='-') f=-1;
        ch=getchar();
    }
    while (ch>='0'&&ch<='9'){
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void add(int x,int y){
    go[++tot]=y;
    next[tot]=h[x];
    h[x]=tot;
}
void dfs(int x,int y){
    size[x]=1;
    int t=h[x];
    while (t){
        if (go[t]!=y){
            dfs(go[t],x);
            size[x]+=size[go[t]];
        }
        t=next[t];
    }
    if (size[x]==c) size[x]=0;
}
void work(int v){
    c=v;
    dfs(1,0);
    if (!size[1]) ans++;
}
int main(){
    n=read();
    fo(i,1,n-1){
        j=read();k=read();
        add(j,k);add(k,j);
    }
    t=floor(sqrt(n));
    fo(i,1,t)
        if (n%i==0){
            work(i);
            if (n/i!=i) work(n/i);
        }
    printf("%d\n",ans);
}


AC算法

我们发现,我们会在那些原本的size(这里的size指子树大小)就是c的倍数的地方划分出新的一块。
大概意思就是,我们设s[x]表示size[x]%c。
那么我删除一个子树y满足s[y]=0而且子树y内所有除y节点s均不为0,接下来整颗树其余未删除部分的s仍然不变吧?
而回忆TLE算法,每删一次就意味着分出了一块。所以如果要分块成功,我们需要分出恰好n/c个块,也就是意味s值为0的节点要有n/c个,那么就是说——size是c的倍数的节点要有n/c个!
我们开个桶记录每种size的节点个数,枚举块大小c,然后去暴力计算其倍数size的个数,这样是n log n的。

#include<cstdio>
#include<algorithm>
#include<cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int maxn=1000000+10;
int size[maxn],h[maxn],go[maxn*2],next[maxn*2],cnt[maxn];
int i,j,k,l,t,n,m,tot,ans,c;
int read(){
    int x=0,f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9'){
        if (ch=='-') f=-1;
        ch=getchar();
    }
    while (ch>='0'&&ch<='9'){
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}
void add(int x,int y){
    go[++tot]=y;
    next[tot]=h[x];
    h[x]=tot;
}
void dfs(int x,int y){
    int t=h[x];
    size[x]=1;
    while (t){
        if (go[t]!=y){
            dfs(go[t],x);
            size[x]+=size[go[t]];
        }
        t=next[t];
    }
}
int main(){
    n=read();
    fo(i,1,n-1){
        j=read();k=read();
        add(j,k);add(k,j);
    }
    dfs(1,0);
    fo(i,1,n) cnt[size[i]]++;
    fo(i,1,n){
        if (n%i!=0) continue;
        t=0;
        fo(j,1,n/i) t+=cnt[i*j];
        if (t==n/i) ans++;
    }
    printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值