[51nos1971]驴蛋蛋与老孙与微分式

382人阅读 评论(0) 收藏 举报
分类:

题目描述

http://www.51nod.com/contest/problem.html#!problemId=1971

oeis

这是一道oeis题,把答案打表,差分丢oeis,可以得到一个东西。
接下来用FFT预处理伯努利数,用公式做。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int N = 800500, mo = 1e9+7, P = 1e9+7;
const double PI = acos(-1.0);
inline ll read(){
    char c=getchar(); ll x=0,f=1;
    while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9') {x=x*10+c-'0';c=getchar();}
    return x*f;
}

int xx,l,r,ca;
int zjy[N];
int qsm(int x,int y){
    if (!y) return 1;
    int t=qsm(x,y/2);
    t=(ll)t*t%mo;
    if (y%2) t=(ll)t*x%mo;
    return t;
}
struct meow{
    double x, y;
    meow(double a=0, double b=0):x(a), y(b){}
};
meow operator +(meow a, meow b) {return meow(a.x+b.x, a.y+b.y);}
meow operator -(meow a, meow b) {return meow(a.x-b.x, a.y-b.y);}
meow operator *(meow a, meow b) {return meow(a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}
meow conj(meow a) {return meow(a.x, -a.y);}
typedef meow cd;

namespace fft {
    int rev[N], maxlen = 1<<19;
    cd omega[N], omegaInv[N];
    void init() {
        for(int i=0; i<maxlen; i++) {
            omega[i] = cd(cos(2*PI/maxlen*i), sin(2*PI/maxlen*i));
            omegaInv[i] = conj(omega[i]);
        }
    }
    void dft(cd *a, int n, int flag) {
        cd *w = flag==1 ? omega : omegaInv;
        for(int i=0; i<n; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
        for(int l=2; l<=n; l<<=1) {
            int m = l>>1;
            for(cd *p = a; p != a+n; p += l) 
                for(int k=0; k<m; k++) {
                    cd t = w[maxlen/l*k] * p[k+m];
                    p[k+m] = p[k] - t;
                    p[k] = p[k] + t;
                }
        }
        if(flag == -1) for(int i=0; i<n; i++) a[i].x /= n;
    }

    cd a[N], b[N], c[N], d[N]; int z[N];
    void inverse(int *x, int *y, int l) {
        if(l == 1) {y[0] = 1; return;}
        inverse(x, y, (l+1)>>1);
        int n = 1, k = 0; while(n < l<<1) n<<=1, k++;
        for(int i=0; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(k-1));

        for(int i=0; i<l; i++) a[i] = cd(y[i]>>15), b[i] = cd(y[i]&32767);
        for(int i=l; i<n; i++) a[i] = b[i] = cd();
        dft(a, n, 1); dft(b, n, 1);
        for(int i=0; i<n; i++) {
            cd _a = a[i], _b = b[i];
            a[i] = _a * _a;
            b[i] = _a * _b + _a * _b;
            c[i] = _b * _b;
        }
        dft(a, n, -1); dft(b, n, -1); dft(c, n, -1);
        for(int i=0; i<l; i++)
            z[i] = ( (ll(a[i].x + 0.5) %mo << 30) %mo + (ll(b[i].x + 0.5) %mo << 15) %mo + ll(c[i].x + 0.5) %mo) %mo;

        for(int i=0; i<l; i++) 
            a[i] = cd(x[i]>>15), b[i] = cd(x[i]&32767), c[i] = cd(z[i]>>15), d[i] = cd(z[i]&32767); 
        for(int i=l; i<n; i++) a[i] = b[i] = c[i] = d[i] = cd();

        dft(a, n, 1); dft(b, n, 1); dft(c, n, 1); dft(d, n, 1);

        for(int i=0; i<n; i++) {
            cd _a = a[i], _b = b[i], _c = c[i], _d = d[i];
            a[i] = _a * _c;
            b[i] = _a * _d + _b * _c;
            c[i] = _b * _d;
        }
        dft(a, n, -1); dft(b, n, -1); dft(c, n, -1);
        for(int i=0; i<l; i++) {
            ll t = ( (ll(a[i].x + 0.5) %mo << 30) %mo + (ll(b[i].x + 0.5) %mo << 15) %mo + ll(c[i].x + 0.5) %mo) %mo;
            y[i] = (y[i] * 2 %mo - t +mo) %mo;
        }
    }
}

int n, m, a[N], b[N];
ll inv[N], fac[N], facInv[N], mi[N];
inline ll C(int n, int m) {return fac[n] * facInv[m] %mo * facInv[n-m] %mo;}
inline ll cal(int n, int m) {
    ll ans = 0;
    mi[0] = 1; for(int i=1; i<=m+1; i++) mi[i] = mi[i-1] * n %mo;
    for(int i=0; i<=m; i++) if(b[i]) (ans += C(m+1, i) * b[i] %mo * mi[m+1-i] %mo) %= mo;
    ans = (ans * inv[m+1]) %mo;
    return ans;
}

int main() {
//  freopen("in", "r", stdin);
    n = 200001;
    inv[1] = fac[0] = facInv[0] = 1;
    for(int i=1; i<=n; i++) {
        if(i != 1) inv[i] = (P - P/i) * inv[P%i] %P;
        fac[i] = fac[i-1] * i %P;
        facInv[i] = facInv[i-1] * inv[i] %P;
    }
    fft::init();
    for(int i=0; i<n; i++) a[i] = facInv[i+1];
    fft::inverse(a, b, n);
    for(int i=0; i<n; i++) b[i] = b[i] * fac[i] %mo;
    fo(xx,0,n-1){
        if (xx%2==1||xx==0) r=b[2*xx];else r=mo-b[2*xx];
        l=(ll)qsm(2,2*xx)*(qsm(2,2*xx)-1)%mo*r%mo*qsm(2*xx,mo-2)%mo;
        (l+=mo)%=mo;
        zjy[xx]=l;
        if (xx) (zjy[xx]+=zjy[xx-1])%=mo;
    }
    scanf("%d",&ca);
    while (ca--){
        scanf("%d",&n);
        /*if (n%2==1||n==0) r=b[2*n];else r=mo-b[2*n];
        l=(ll)qsm(2,2*n)*(qsm(2,2*n)-1)%mo*r%mo*qsm(2*n,mo-2)%mo;
        (l+=mo)%=mo;*/
        printf("%d\n",zjy[(n+1)/2]);
    }
}
查看评论

[多项式求逆] 51Nod TalkingData数据科学精英夏令营挑战赛 F 驴蛋蛋与老孙与微分式

题解里给出了一种解偏微分方程得出生成函数的方法 最后应该是 H(z,x)=sinz+xcoszcosz−xsinzH(z,x)={\sin z+x \cos z \over \cos z−x\si...
  • u014609452
  • u014609452
  • 2017-06-18 14:09:56
  • 435

BZOJ 2716 [Violet 3]天使玩偶 KDtree

以下引用自“‎Alboi_真神名曰驴蛋蛋”对于一颗普通的K-D树,让K-D树上每个节点记录它这颗子树的大小(size)和这颗子树所能延伸到的最大横坐标,最小横坐标,最大纵坐标,最小纵坐标......就...
  • magic_sheep
  • magic_sheep
  • 2017-02-25 21:23:00
  • 349

“深度学习已死,可微编程万岁!”LeCun老师为何又语出惊人?

夏乙 编译整理量子位 出品 | 公众号 QbitAIDeep Learning est mort. Vive Differentiable Programming!这句英法混合的话,翻译成汉语,就是“...
  • yH0VLDe8VG8ep9VGe
  • yH0VLDe8VG8ep9VGe
  • 2018-01-06 00:00:00
  • 4802

【深度学习会被可微分编程取代?】展望30年后的神经网络和函数编程

目前,深度学习是一个非常成功的工具。但这个工具是我们偶然发现的,作为一个领域,还没有统一的看法或共同的理解。事实上,这个领域还存在几种相互竞争的表述! 我认为在30年后回过头看,我们将看到很不一...
  • weixin_40581617
  • weixin_40581617
  • 2018-01-09 15:24:16
  • 58

pc蛋蛋幸运28投注软件

  • 2009年11月21日 12:29
  • 4.99MB
  • 下载

PC蛋蛋3N算法-excel表格公式自动计算

  • 2010年07月28日 14:34
  • 143KB
  • 下载

PC蛋蛋九尾预测器V5.0 (第五版)

  • 2010年07月14日 22:12
  • 139KB
  • 下载

幸运28预测软件。PC蛋蛋刷钱```

  真心求  预测软件啊
  • greatwall1
  • greatwall1
  • 2011-03-08 12:48:00
  • 1131

PC蛋蛋单双预测

  • 2014年04月03日 23:23
  • 2.22MB
  • 下载

bzoj2437 [Noi2011]兔兔与蛋蛋

题解:我们将棋盘分成黑白格子(相邻格子颜色不同),将空格染成黑色,那么我们可以知道X为合法棋子当且仅当X在黑色格子,而O为合法棋子当且仅当O在白色格子。 相邻合法棋子(空格也为合法)连边,则我们得到...
  • MustImproved
  • MustImproved
  • 2016-09-08 14:55:18
  • 297
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 39万+
    积分: 1万+
    排名: 1455
    最新评论
    文章分类