[agc005d]~K Perm Counting

版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/78400677

前言

简单的容斥DP题。

题目大意

有多少排列对于每个位置i都满足|aii|!=k

容斥

当然是经典容斥问题了。
假如钦定某些位置不满足条件,其可以往前或后连。
发现只有模k相同的互相有影响。
不妨先做一个状压dp,f[i,j,s]表示有i个点,有j个点有出度(也就是j个不满足条件),其中i有没有入度,i+1有没有入度。
转移简单。
初始状态是f[1],注意第1个不能往前连。
然后接下来对于每一个模k可以算出有多少位置,然后全部合并成g[i]表示i个位置被强制不满足的方案数,乘上容斥系数和其余乱放的方案数即可。

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
typedef long long ll;
const int maxn=2000+10,mo=924844033;
int f[maxn][maxn][4],g[maxn],h[maxn],fac[maxn];
int i,j,k,l,r,t,n,m,ans;
int main(){
    scanf("%d%d",&n,&k);
    fac[0]=1;
    fo(i,1,n) fac[i]=(ll)fac[i-1]*i%mo;
    f[1][0][0]=1;
    f[1][1][2]=1;
    fo(i,1,n-1)
        fo(j,0,i)
            fo(t,0,3)
                if (f[i][j][t]){
                    (f[i+1][j][(t>>1)]+=f[i][j][t])%=mo;
                    if (t%2==0) (f[i+1][j+1][(t>>1)]+=f[i][j][t])%=mo;
                    (f[i+1][j+1][(t>>1)+2]+=f[i][j][t])%=mo;
                }
    g[0]=1;
    fo(r,1,k){
        t=r;
        l=1;
        while (t+k<=n){
            l++;
            t+=k;
        }
        fo(i,0,n) h[i]=0;
        fo(i,0,n)
            fo(j,0,l)
                fo(t,0,1)
                    if (i+j<=n) (h[i+j]+=(ll)g[i]*f[l][j][t]%mo)%=mo;
        fo(i,0,n) g[i]=h[i];
    }
    fo(i,0,n){
        t=(ll)g[i]*fac[n-i]%mo;
        if (i%2) (ans-=t)%=mo;else (ans+=t)%=mo;
    }
    (ans+=mo)%=mo;
    printf("%d\n",ans);
}
展开阅读全文

没有更多推荐了,返回首页