深度学习的Dimension检查

本文介绍了在构建深度学习神经网络时进行维度检查的重要性,通过一个5层神经网络的例子阐述了网络各层输入输出矩阵的维度,并详细说明了网络中各个变量的维度表示,包括训练样本数量、特征数、激活单元数等,帮助理解前向传播和反向传播过程。
摘要由CSDN通过智能技术生成

在构建深度学习神经网络结构的时候,由于网络的拓扑结构比较复杂,包括比较多的层次(hidden layer),以及每一层又有许多activation(neuron)单元组成,因此在计算forward以及backward propagation时,为了减少不必要的错误,最好对其中的每一层的input/output matrix的dimension有个底,也对每一层的input/output结构有更好的理解。


为了更好地表述,一般需要统一一下用到的一些符号,以及其代表的意义。下面以一个5层的神经网络结构为例子:
这里写图片描述

Denotation

  • L :整个网络的层次,上图就是一个5层的神经网络,它包含4个hidden layers, 一个output layer,通常input 层不计算在L里面,当然也可以认为它是第0层。
  • :(小写L),表示当前是第几层。
  • m:有多少个training/test example
  • nx :每一个training/test example有多少个feature, 上图 nx =2 ( x1,x2 )
  • n[] :第 层有多少个activation unit, 比如上图中 n[1] =3, n[2] =5, …, n[5] =1, 其中 n[0] = nx =2
  • W[] : 第 层的parameters, 用来计算第 层的activation unit (Z=WX+b)
  • b[] :第 层的校正量(bias), 同上用于计算Z函数
  • Z[] :Forward propagation的线性输出, Z[] = W[] A[1] + b[] , 其中第一层 Z[1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值