import pandas as pd
from gensim.models import LdaModel
from gensim.corpora import Dictionary
import matplotlib.pyplot as plt
from multiprocessing import freeze_support
# 读取新闻文本数据
df = pd.read_excel('nltk处理后新闻合并.xlsx', header=0, names=['cleaned_text'])
# 处理NaN值并将文本转换为词袋表示
def preprocess_text(text):
if pd.isnull(text):
return ""
return text
df['cleaned_text'] = df['cleaned_text'].apply(preprocess_text)
tokenized_texts = [text.split() for text in df['cleaned_text'] if text]
dictionary = Dictionary(tokenized_texts)
corpus = [dictionary.doc2bow(text) for text in tokenized_texts]
if __name__ == '__main__':
freeze_support()
# 固定LDA主题数量为5
num_topics = 5
# 训练LDA模型
lda_model = LdaModel(corpus, num_topics=num_topics, id2word=dictionary, passes=5)
# 打印各主题内容
for topic_idx, topic_words in lda_model.print_topics():
print(f"Topic {topic_idx + 1}: {topic_words}")
# 可以选择绘制主题分布图等其他操作