【PAT A1030】Travel Plan——Dijkstra+DFS和Dijkstra算法复盘总结

11 篇文章 0 订阅

1:Dijkstra+DFS

//错误总结
//1:不需要记录最小花费,这里就是和之前的DJ的区别所在,后面专门计算最小花费
//2:d[u]要进行更新
//3:temp.pop_back();//不需要传参数进去
//4:已知tempPath,不知道怎么求花费(找到相邻的下标进行操作)
//5:用cin输入的时候:不要写成书上那种简便写法:
//5:scanf("%d%d",&v,&n);直接用v,n作为下标进行操作,好像是不行,要进行初始化,并且还输入不进去
#include <iostream>
#include<vector>
#include<algorithm>
using namespace std;
int n, m, s, e;
const int INF = 100000000;
const int MAXV = 510;
vector<int>pre[MAXV],path,temp;
int G[MAXV][MAXV],c[MAXV][MAXV];
int d[MAXV];//不需要记录最小花费,这里就是和之前的DJ的区别所在,后面专门计算最小花费
bool vis[MAXV] = { false};
void Dj(int v)
{
	fill(d, d + MAXV, INF);
	d[v] = 0;
	for (int i = 0; i < n; i++)
	{
		int u = -1, min = INF;
		for (int j = 0; j < n; j++)
		{
			if (vis[j] == false && d[j] < min)
			{
				u = j;
				min = d[j];
			}
		}
		if (u == -1)return;
		vis[u] = true;
		for (int k = 0; k < n; k++)
		{
			if (vis[k] == false && d[u] + G[u][k] < d[k])
			{
				//d[u]要进行更新
				d[k] = d[u] + G[u][k];
				pre[k].clear();
				pre[k].push_back(u);
			}
			else if (vis[k] == false && d[u] + G[u][k] == d[k])\
			{
				pre[k].push_back(u);

			}
		}
	}



}
int optvalue=INF;
void DFS(int en)
{
	if (en == s)
	{
		temp.push_back(en);
		int value = 0;
		for (int i =temp.size()-1;i > 0; i--)//从后面进行遍历,就应该为i--
		{
			int id = temp[i], idnext = temp[i-1];
			value += c[id][idnext];
		}
		if (value < optvalue) {
			path = temp; 
			optvalue = value;

		}
		temp.pop_back();//不需要传参数进去
	}
	temp.push_back(en);
	for (int i = 0; i < pre[en].size(); i++)
	{
		DFS(pre[en][i]);
	}
    temp.pop_back();

}

int main() {
	cin >> n >> m >> s >> e;
	fill(G[0], G[0] + MAXV * MAXV, INF);
	fill(c[0], c[0] + MAXV * MAXV, 0);
	int v, p,w,dw;
	for (int i = 0; i < m; i++)
	{
		cin >> v >> p >> w >> dw;
		G[p][v] = G[v][p]=w;
		c[p][v] = c[v][p]=dw;
	}
	Dj(s);
	DFS(e);
	for (int i = path.size()-1; i >=0 ; i--)
	{
		cout << path[i]<<' ';
	}
	cout << d[e] <<' '<< optvalue << endl;
	return 0;


}

2:Dijkstra算法

//错误总结:
//1:填充的时候c数组中出现:MAXV*MAXV,然后出现段错误
#include <iostream>
#include<algorithm>
using namespace std;
int n, m, s, e;
const int MAXV = 510;//开始把数组调小了
const int INF = 1000000000;
int adj[MAXV][MAXV],c[MAXV][MAXV];
int d[MAXV], cost[MAXV], pre[MAXV];
bool vis[MAXV] = { false };
void Dj(int s) {
    fill(d, d + MAXV, INF);
    d[s] = 0;
    //初始化:又是老问题:MAXV*MAXV
    fill(cost, cost + MAXV , INF);
    cost[s] = 0;
    for (int i = 0; i < n; i++)pre[i] = i;
    for (int i = 0; i < n; i++)
    {
        int u = -1, min = INF;
        for (int j = 0; j < n; j++)
        { 
            if (vis[j] == false && d[j] < min)
        {
            u = j;
            min = d[j];
        }

        }
       
    
    if (u == -1)return;
    vis[u] = true;
    for (int j = 0; j < n; j++)
    {
        // && adj[i][u] != INF,从上面那个循环就已经知道其有路径
        if (vis[j] == false && adj[u][j] != INF)
        {
            if (d[u] + adj[u][j] < d[j])
            {
                d[j] = d[u] + adj[u][j];
                pre[j] = u;
                cost[j] = cost[u] + c[u][j];
            }
            else if (d[u] + adj[u][j] == d[j]&&cost[j] > cost[u] + c[u][j])
            {  
                pre[j] = u;
                cost[j] = cost[u] + c[u][j];
            }
        }
    }

}
}
void DFS(int vt) {
    if (vt == s)
    {
        cout << pre[vt]<<' ';
        //没有递归出口的话,一直成为死循环
        return;
    }
    DFS(pre[vt]);
    cout << vt<<' ';
}
int main()
{
    cin >> n >> m >> s >> e;
    int i,o,l,w;
    //初始化图
    fill(adj[0], adj[0] + MAXV * MAXV, INF);
    for (int p = 0; p < m; p ++)
    {
        cin >> i >> o>>l>>w;
        adj[i][o] = l;
        adj[o][i] = l;
        c[i][o] = w;
        c[o][i] = w;
    }
    Dj(s);
    DFS(e);
    cout << d[e] <<" "<< cost[e] << endl;
    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值