BigCowPeking

实践是检验真理的唯一标准

排序:
默认
按更新时间
按访问量
RSS订阅

深度学习通用策略:BN原理详解以及优势

今年过年之前,MSRA和Google相继在ImagenNet图像识别数据集上报告他们的效果超越了人类水平,下面将分两期介绍两者的算法细节。  这次先讲Google的这篇《Batch Normalization Accelerating Deep Network Training by Reduci...

2018-04-18 22:09:20

阅读数 2053

评论数 0

深度学习剖根问底: Adam优化算法的由来

转载:https://zhuanlan.zhihu.com/p/27449596?utm_source=weibo&utm_medium=social在调整模型更新权重和偏差参数的方式时,你是否考虑过哪种优化算法能使模型产生更好且更快的效果?应该用梯度下降,随机梯度下降,还...

2018-04-14 11:27:23

阅读数 2323

评论数 0

深度学习通用策略:SGD, weight decay, momentum, normalization含义理解

1. weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型...

2018-04-05 11:08:49

阅读数 1188

评论数 0

深度学习通用策略:SGD优化方法总结

转载:https://zhuanlan.zhihu.com/p/22252270(标题不能再中二了)本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。SGD此处的SGD指mini-batch gradient descent,关于...

2018-03-08 21:41:53

阅读数 4378

评论数 1

深度学习通用技巧:caffe调参技巧总结

Must Know Tips/Tricks in Deep Neural Networks  Deep Neural Networks, especially Convolutional Neural Networks (CNN), allows computational models that...

2018-02-21 21:29:22

阅读数 586

评论数 0

caffe:测试每一层的时间

caffe测试时间:每一层的时间 我用的是ubuntu的caffe。 在caffe的目录下 在terminal中运行以下命令用以测试已经训练好的caffemodel的accuracy: (或者将以下命令放在.sh文件中运行) ./build/tools/caffe t...

2018-02-04 14:11:02

阅读数 1775

评论数 0

深度学习通用策略:Soft-NMS算法实现

一篇讲通过改进NMS来提高检测效果的论文。 文章链接: 《Improving Object Detection With One Line of Code》 Github链接: https://github.com/bharatsingh430/soft-nms Motivati...

2018-01-06 22:10:47

阅读数 2595

评论数 0

深度学习:模型参数调优

深度学习:模型参数调优

2017-12-09 09:42:51

阅读数 2129

评论数 0

深度学习网络设计:十大拍案叫绝的卷积设计操作

卷积的十大拍案叫绝的操作一、卷积只能在同一组进行吗?– Group convolutionGroup convolution 分组卷积,最早在AlexNet中出现,由于当时的硬件资源有限,训练AlexNet时卷积操作不能全部放在同一个GPU处理,因此作者把feature maps分给多个GPU分别...

2017-12-09 09:21:50

阅读数 3566

评论数 1

模型调参:分步骤的提升模型的精度

模型调参:分步骤的提升模型的精度

2017-12-01 22:14:11

阅读数 11741

评论数 0

模型调参:超参调节tips总结

模型调参:tips总结

2017-12-01 21:40:18

阅读数 3445

评论数 0

模型调参:绘制loss曲线图

模型调参:绘制loss曲线图

2017-12-01 21:29:06

阅读数 4898

评论数 2

深度学习调参:简短的注意事项

深度学习调参:简短的注意事项

2017-12-01 21:09:27

阅读数 453

评论数 0

BatchNorm层训练和测试的注意事项

BatchNorm层训练和测试的注意事项

2017-11-20 21:56:43

阅读数 4272

评论数 0

PVAnet目标检测注意点

PVAnet目标检测注意点

2017-10-31 18:30:56

阅读数 712

评论数 0

CNN卷积网络设计的理解点

CNN网络设计的理解点

2017-10-22 14:20:55

阅读数 452

评论数 0

Inception网络理解

Inception网络的理解     第一张图是论文中提出的最原始的版本,所有的卷积核都在上一层的所有输出上来做,那5×5的卷积核所需的计算量就太大了,造成了特征图厚度很大。为了避免这一现象提出的ince

2017-10-22 13:49:23

阅读数 5566

评论数 0

ResNet残差网络的理解

残差网络理解

2017-10-22 09:39:52

阅读数 4233

评论数 0

bounding box voting

bounding box voting

2017-10-12 21:38:52

阅读数 1017

评论数 2

caffe中Python层的使用

caffe中Python层的使用

2017-10-11 21:45:16

阅读数 316

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭