caffe中Python层的使用

转载地址:http://blog.csdn.net/wei1033701020/article/details/53815874

caffe的大多数层是由c++写成的,借助于c++的高效性,网络可以快速训练。但是我们有时候需要自己写点输入层以应对各种不同的数据输入,比如你因为是需要在图像中取块而不想写成LMDB,这时候可以考虑使用Python直接写一个层。而且输入层不需要GPU加速,所需写起来也比较容易。

python层怎么用

先看一个网上的例子吧(来自http://chrischoy.github.io/research/caffe-python-layer/

layer {
  type: 'Python'
  name: 'loss'
  top: 'loss'
  bottom: 'ipx'
  bottom: 'ipy'
  python_param {
    # the module name -- usually the filename -- that needs to be in $PYTHONPATH
    module: 'pyloss'
    # the layer name -- the class name in the module
    layer: 'EuclideanLossLayer'
  }
  # set loss weight so Caffe knows this is a loss layer
  loss_weight: 1
}

这里的type就只有Python一种,然后top,bottom和常见的层是一样的,module就是你的python module名字,一般就是文件名,然后layer就是定义的类的名字。

一般setup、reshape、forword、backword四个函数是必须的,其他函数按自己的需求来补充,这四个函数格式如下:

def setup(self, bottom, top)、def reshape(self, bottom, top)、def forward(self, bottom, top)
def backward(self, top, propagate_down, bottom):
   
   

这里就以 Fully Convolutional Networks for Semantic Segmentation 论文中公布的代码作为示例,解释python层该怎么写。

import caffe

import numpy as np
from PIL import Image

import random

class VOCSegDataLayer(caffe.Layer):
    """ Load (input image, label image) pairs from PASCAL VOC one-at-a-time while reshaping the net to preserve dimensions. Use this to feed data to a fully convolutional network. """

    def setup(self, bottom, top):
        """ Setup data layer according to parameters: - voc_dir: path to PASCAL VOC year dir - split: train / val / test - mean: tuple of mean values to subtract - randomize: load in random order (default: True) - seed: seed for randomization (default: None / current time) for PASCAL VOC semantic segmentation. example params = dict(voc_dir="/path/to/PASCAL/VOC2011", mean=(104.00698793, 116.66876762, 122.67891434), split="val") """
        # config
        params = eval(self.param_str)
        self.voc_dir = params['voc_dir']
        self.split = params['split']
        self.mean = np.array(params['mean'])
        self.random = params.get('randomize', True)
        self.seed = params.get('seed', None)

        # two tops: data and label
        if len(top) != 2:
            raise Exception("Need to define two tops: data and label.")
        # data layers have no bottoms
        if len(bottom) != 0:
            raise Exception("Do not define a bottom.")

        # load indices for images and labels
        split_f  = '{}/ImageSets/Segmentation/{}.txt'.format(self.voc_dir,
                self.split)
        self.indices = open(split_f, 'r').read().splitlines()
        self.idx = 0

        # make eval deterministic
        if 'train' not in self.split:
            self.random = False

        # randomization: seed and pick
        if self.random:
            random.seed(self.seed)
            self.idx = random.randint(0, len(self.indices)-1)


    def reshape(self, bottom, top):
        # load image + label image pair
        self.data = self.load_image(self.indices[self.idx])
        self.label = self.load_label(self.indices[self.idx])
        # reshape tops to fit (leading 1 is for batch dimension)
        top[0].reshape(1, *self.data.shape)
        top[1].reshape(1, *self.label.shape)


    def forward(self, bottom, top):
        # assign output
        top[0].data[...] = self.data
        top[1].data[...] = self.label

        # pick next input
        if self.random:
            self.idx = random.randint(0, len(self.indices)-1)
        else:
            self.idx += 1
            if self.idx == len(self.indices):
                self.idx = 0


    def backward(self, top, propagate_down, bottom):
        pass


    def load_image(self, idx):
        """ Load input image and preprocess for Caffe: - cast to float - switch channels RGB -> BGR - subtract mean - transpose to channel x height x width order """
        im = Image.open('{}/JPEGImages/{}.jpg'.format(self.voc_dir, idx))
        in_ = np.array(im, dtype=np.float32)
        in_ = in_[:,:,::-1]
        in_ -= self.mean
        in_ = in_.transpose((2,0,1))
        return in_


    def load_label(self, idx):
        """ Load label image as 1 x height x width integer array of label indices. The leading singleton dimension is required by the loss. """
        im = Image.open('{}/SegmentationClass/{}.png'.format(self.voc_dir, idx))
        label = np.array(im, dtype=np.uint8)
        label = label[np.newaxis, ...]
        return label

准备工作:

Compile WITH_PYTHON_LAYER option

First, you have to build Caffe with WITH_PYTHON_LAYER option 1. Run make clean to delete all the compiled binaries. Then,

WITH_PYTHON_LAYER=1 make && make pycaffe

If you skip this, caffe will complain that layer factory function can’t find Python layer.

layer_factory.hpp:77] Check failed: registry.count(type) == 1 (0 vs. 1) Unknown layer type: Python

Python Layer

gist from Evan Shelhamer summarizes the basics of the python layer.

...
layer {
  type: 'Python'
  name: 'loss'
  top: 'loss'
  bottom: 'ipx'
  bottom: 'ipy'
  python_param {
    # the module name -- usually the filename -- that needs to be in $PYTHONPATH
    module: 'pyloss'
    # the layer name -- the class name in the module
    layer: 'EuclideanLossLayer'
  }
  # set loss weight so Caffe knows this is a loss layer
  loss_weight: 1
}

You have to define a python layer that is defined in your $PYTHONPATH. In the prototxt, the module is pyloss, which means that the file that contains the EuclideanLossLayershould be named pyloss.py.

import caffe
import numpy as np

class EuclideanLossLayer(caffe.Layer):

    def setup(self, bottom, top):
        # check input pair
        if len(bottom) != 2:
            raise Exception("Need two inputs to compute distance.")

    def reshape(self, bottom, top):
        # check input dimensions match
        if bottom[0].count != bottom[1].count:
            raise Exception("Inputs must have the same dimension.")
        # difference is shape of inputs
        self.diff = np.zeros_like(bottom[0].data, dtype=np.float32)
        # loss output is scalar
        top[0].reshape(1)

    def forward(self, bottom, top):
        self.diff[...] = bottom[0].data - bottom[1].data
        top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2.

    def backward(self, top, propagate_down, bottom):
        for i in range(2):
            if not propagate_down[i]:
                continue
            if i == 0:
                sign = 1
            else:
                sign = -1
            bottom[i].diff[...] = sign * self.diff / bottom[i].num
  1. https://github.com/BVLC/caffe/issues/2093 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值