caffe中训练自己的数据集的步骤

1. 准备数据,正负样本的原图和正负样本的路径;

例如:文件夹face,文件夹noface,训练和验证的文件名路径txt

2. 创建数据库

在caffe/example目录下新建目录myself。并将caffe/examples/imagenet目录下create_imagenet.sh文件拷贝到myself中。

create_imagenet.sh的内容如下:


第5行的EXAMPLE指定生成的数据库文件存放路径,生成lmdb。

第6行的DATA指定生成数据库所需文件来源路径,训练train.txt和val.txt的路径。

9行的TRAIN_DATA_ROOT指明存放训练图片的绝对路径。

10行的VAL_DATA_ROOT指明存放测试图片的绝对路径的。TRAIN_DATA_ROOTVAL_DATA_ROOT写错了,就会报一堆找不到图片的错误。

第12行到21行用于将图片调节成统一大小,256X256。

 

第45、55行指定生成的数据库文件夹的名称。

 4. 生成的数据库文件

在caffe的主目录下输了命令./examples/myself/create_imagenet.sh就会在create_imagenet.sh中的EXAMPLE所指定的目录下(此次为example/myself)生成两个数据库文件。

 


5. 训练网络

①  拷贝models/bvlc_alexnet目录下的train_val.prototxt文件到example/myself目录下。

该文件的定义的为待训练网络的结构。

 

②拷贝models/bvlc_alexnet目录下的solver.prototxt文件到example/myself目录下。

该文件为训练网络时的所需的一些配置和设置


第1行指定定义网络结构的文件的相对路径。

③  拷贝examples/imagenet目录下的make_imagenet_mean.sh文件到examples/myself目录下。用于计算图像均值,使用的源文件在/tools/compute_image_mean.cpp。

 

 生成训练数据的均值文件

④  拷贝examples/imagenet目录下的train_caffenet.sh文件到example/myself目录下。

该文件为一个脚本文件,内容为训练网络的命令

 

在caffe的主目录下输入命令:./ examples/myself/train_caffenet.sh开始训练网络。

转载:http://blog.csdn.net/AlexQiweek/article/details/51281240

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值