深度学习算法流程

本文详细介绍了深度学习算法的流程,包括通过PyTorch的数据集接口送入数据,定义网络结构,以及使用反向传播更新网络参数进行训练。在训练过程中,每个epoch覆盖整个训练集,并按批次(batch)进行处理。

把数据送到网络,通过前向传播得到预测值

预测值和标签值作比较,根据标签值和预测值的差别 计算损失函数

根据损失值,利用反向传播算法来更新网络参数 达到机器学习的目的

1、如何送数据,继承pytorch Dataset

 

2、如何定义网络结构 继承pytorch的nn.Module

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值