- 博客(21)
- 资源 (1)
- 收藏
- 关注
原创 FoveaBox: Beyond Anchor-based Object Detector 算法解析
又是一篇 anchor-free 的论文,读完之后,感觉再次应证了自己的观点。anchor free的算法,结构其实都差不多,尤其是检测头部分,基本上都是从Image -- Image。最终预测结果也基本上都是 H*W*K H*W*4的图(要不就加几个分支)。他们本质上不同的地方其实是标签的定义,损失函数的设计,还有后处理。当然,最近的这几篇在后处理上的工作倒是没做多少,所以感觉这是一个...
2019-07-13 11:25:21 1308 2
原创 FCOS: Fully Convolutional One-Stage Object Detection 算法解析
这是一篇使用 anchor free 方法做目标检测的工作,相对于其他的工作,没有本质上的变化,但是我觉得有两个创新点是很有意思的。 文章:FCOS: Fully Convolutional One-Stage Object Detection 论文地址:https://arxiv.org/pdf/1904.01355.pdf 代码地址:https://git...
2019-07-11 17:24:27 528
原创 剑指 offer -- 刷题记录
任谁都躲不过找工作的问题,好希望能多准备一些时间,奈何时间不等人,每天刷几道题,并且记录下来吧:一、请实现一个函数,将一个字符串中的每个空格替换成“%20”。例如,当字符串为We Are Happy.则经过替换之后的字符串为We%20Are%20Happy。def replaceSpace(s): # write code here num_space = 0...
2019-07-09 11:57:37 303
原创 旷视面经 -- 之再撕 Faster RCNN 算法流程
一开始坑定是问项目,但每个人都不一样,所以没啥写的必要,然后开始问基础,这个大家都一样,所以有写的价值,最后编程,就写了个NMS,这个应该会吧? 旷视实习生面试, 感觉面试官对这种 two stage 的算法很在意, 问的问题也会从很宽泛到非常的细节. 面完之后感觉对这个算法的理解还是不够的, 所以 按照我碰到的问题,再来认真的撕一遍.一 RPN 问:...
2019-07-06 11:17:16 2215 3
原创 行人检测论文 -- ALFnet Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fit
论文名称:Learning Efficient Single-stage Pedestrian Detectors by Asymptotic Localization Fitting代码地址:https://github.com/liuwei16/ALFNet 这是18年行人检测做的结果比较好的一篇论文,如果发现我有写的不对的地方,欢迎指出 . 还是一篇行人检测,使用...
2019-06-27 10:42:54 1638
原创 CSP: Center and Scale Prediction CVPR2019 代码部分-1 Loss-标签
接上一篇博客,持续更新CSP的源码解读. 论文名称: High-level Semantic Feature Detection: A New Perspective for Pedestrian Detection 论文地址:https://arxiv.org/abs/1904.02948 代码地址:https://github.com/liuw...
2019-05-30 21:38:04 1388
原创 CSP: Center and Scale Prediction CVPR2019行人检测论文 翻译+解读
这篇文章使用anchor free的方式进行行人检测,在两个数据集上都取得了SOTA的实验结果,论文还将这种方法使用在人脸检测上,同样取得了很好的效果,证明这种方法有很好的泛化能力.我在下一篇写了写这篇论文使用的标签,对理解这篇论文的Loss center有帮助..论文名称: High-level Semantic Feature Detection: A New Perspectiv...
2019-05-17 11:39:44 5699 2
原创 pycharm + PyQt5 读取串口并显示数据和图像
万恶的项目上有一点需求,需要我们收集底层采集到的数据,本地存储,再发送到云端,被迫搬砖写了个小型的UI,记录下。 完整的下载代码地址:https://download.csdn.net/download/weixin_39749553/11026494 首先是环境,开发的工具是Pycharm,python的解释器使用 anaconda3,辅助包主要是PyQt5,会...
2019-03-16 22:24:19 16009 3
原创 深度学习 -- SSD 算法流程详解
SSD同样是经典论文,后续很多论文以此为基础,所以搞懂流程比较重要,中间如果 有写的不对、有问题或者有看不懂的地方,还望指正。如果有了新的理解,我会持续更新。 作为经典论文,SSD算法也同样产生了很多后续工作比如 DSSD、RefineDet等等,而且由于有速度优势,工程中使用SSD和YOLO的可能性会更大。 一、网络结构: 上图是SSD和...
2019-03-03 21:59:57 70508 7
原创 深度学习 -- YOLO 算法流程详解
YOLO同样是经典论文,后续很多论文以此为基础,例如YOLO9000、YOLOv3等, 如果有写的不对、有问题或者看不懂的地方,还望指正。如果有了新的理解,我会持续更新。 文章2016年发表,当时的视觉检测模型有两个问题,一个是速度快但是准确率差,另一种是准确率高但是速度很慢(faster rcnn 当时只有 3 - 5 FPS)。这类,无论在学术界还是工程界,都有很大的...
2019-03-02 17:49:31 23264 2
原创 深度学习 -- Faster rcnn 算法流程详解
经典论文,后续很多论文以此为基础,所以搞懂流程比较重要,中间如果 有写的不对、有问题或者看不懂的地方,还望指正。如果有了新的理解,我会持续更新。 Faster Rcnn是目前学术上用的非常多的目标检测算法,这里来认真的梳理一遍该算法的流程,主要看检测的部分。 一、网络结构: 这是faster rcnn的整个网络结构,...
2019-03-02 13:05:52 7225 1
原创 机器学习实战 -- AdaBoost
这位博主有、东西哦:https://cuijiahua.com/blog/2017/11/ml_10_adaboost.html 机器学习实战中介绍的前几种算法都是分类算法,我们可以将多种分类器或在不同情况下的单种分类器进行集成,这样的方法叫做元算法(meta-algorithm)或者叫做集成方法(ensemble method)。Adaboost就是一种集成方法,通过集...
2019-02-23 16:30:30 406
原创 Z-Stack学习 -- 在协议栈下使用ADC
在协议栈下使用ADC还是很简单的,对电压输出型的传感器,如果传感器输出为0 - 3.3V,就可以直接接到板上,如果是0 - 5V,可以先用一个分压电阻分压,然后接到板子上。这里用的是3.0的协议栈,板子是CC2538的,可能和2530有一点区别。 一、硬件电路 这部分其实很简单,按照传感器要求的电路接好就可以了,一定要注意的是,传感器和开发板共地,否则ADC的采样...
2018-08-06 21:45:41 6153
原创 Z-Stack 学习 -- 调用自定义事件
总结一下调用事件的流程,做一个调用事件的实验。一、调用事件流程 上篇我们说了Z-Stack处理事件的流程,这个流程可以总结成以下几步: 1. 在操作系统运行的函数中,下列程序对编号为 idx 的任务的 events 事件进行处理 activeTaskID = idx; events = (tasksArr[idx])( idx, events...
2018-08-03 10:29:57 1849
原创 Z-STACK 学习 -- 事件处理的流程
上篇我们说了协议栈运行的流程,这篇我们看下事件在协议栈中是怎样被处理的。 处理事件有一个很重要的函数,就是 events = (tasksArr[idx])( idx, events ) ,乍一看这只是一个数组,其实tasksArr是一个指向数组的指针,当然我们也可以把 tasksArr[] 看成一个数组。在这个数组中存放的是所有的任务处理函数的入口,双击tasksArr按...
2018-08-02 22:57:32 1431
原创 Z-STACK 协议栈学习 -- OSAL
期间参加了一次天池的比赛,然后就来了项目,,,(无力),比赛的内容也忘得差不多了,有时间再补上。 项目需要用zigbee做通信,为了开发得快一点这里就使用了Z-Stack,这是一个近似于小型操作系统管理的协议栈。我们先来看以下它的工作流程。一、OSAL OSAL管理着开发板上的各种资源,是一个为操作系统,他的工作流程如下。 首先我们需要知道整个协议...
2018-08-02 22:04:58 909
原创 机器学习实战 -- 朴素贝叶斯
朴素贝叶斯是一种基于概率论的分类方法,贝叶斯规则被用于很多分类的理论分析中,首先从实战的代码看一下朴素贝叶斯的操作方法,最后做理论分析,分析一下代码中为什么要这样做。一、算法原理 贝叶斯规则的公式如下 w的类别可以表示为,在ci类别下w发生的概率乘以ci发生的概率再除以w发生的概率,想要理解书中的代码这一句话就够了。二、代码实现 先做一个小实验,针对侮辱性和非侮辱性的留...
2018-03-28 22:13:12 280
原创 机器学习实战 -- kNN分类算法
网上有很多《机器学习实战》的资料,大多只讲具体操作,内部的原理并没有分析,这篇博文先讲kNN的具体实现,然后在推导一下算法背后的数学原理,注意:(代码是在Python3下实现的,有一点小改动)。一、算法的工作原理 首先我们需要一个数据集,数据集中包括数据和标签(数据和标签之间的关系一一对应)--该数据集我们称之为样本集,当我们输入没有标签的新数据时,算法将新数据的每个特征和已有样本...
2018-03-26 21:34:39 410
原创 Linux双系统安装和注意的问题
Linux系统很适合进行机器学习和深度学习的实验和开发,所以上周花了一周时间安装、学习了Linux系统大概的用法。1. 安装过程 1. 首先需要一个干净的U盘,把上面的资料都清空。 2. 官网下载系统的地址是:https://www.ubuntu.com/download/alternative-downloads,Ubuntu的官网提供了14.04,16.04和17.04...
2018-03-25 11:30:07 3677
原创 深度学习之—— GoogLeNet
文章链接:https://arxiv.org/pdf/1409.4842v1.pdf文章的主要贡献:1. 提出了一种名为 Inception 的网络结构2. 这种结构解决了计算机硬件和稀疏结构之间的矛盾(感觉这个是这篇文章的最大创新点)这篇博文中有非常详细的网络结构图:http://blog.csdn.net/qq_31531635/article/details/72232651一、文章背景: ...
2018-03-09 22:28:36 3162
原创 矩阵指数函数的计算方法
最近考要考代数,矩阵代数中会考到矩阵函数,其中将一个矩阵写成指数函数的形式在系统和控制理论中经常会用到,下面以一个具体的例子来解释,如何将可逆矩阵A写成其指数函数的形式。这种解法比较繁琐,但是能从更加基础的角度解释这个问题。 如需转载请说明。 ...
2017-12-18 17:25:24 52088 4
pycharm + pyqt5 实现串口读取和显示
2019-03-16
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人