深入浅出机器学习之支持向量机SVM(SMO算法)

本文深入介绍机器学习中的支持向量机(SVM)算法,特别是简化的SMO算法。通过SMO算法逐步求解最优解,通过选取两个alpha进行优化,遵循KKT条件,不断迭代更新直至所有alpha满足最优条件。内容包括算法流程、变量选择策略以及优化过程的详细解释。
摘要由CSDN通过智能技术生成

第一版,主要介绍算法的大概流程。细节推导等我写纸上再拍张上传。主要基于统计学习方法这本书。

SMO算法看了好长时间,大体看了看推导特别多,遂想直接看代码,但是代码是基于数学公式,于是重新回去看了看,发现推导其实不是很复杂,先了解整个算法的流程,然后再仔细的看每一块的推导。

SMO算法的目的就是要求出所有的a(alpha),然后根据a去求W和b。但是由于a的数量繁多,想达到一起全部求出最优值还是挺麻烦的,因此:选取两个a作为变量,其他的看做是常数。然后在两个变量的基础上进行优化。以此类推,直到所有的a优化后,达到要求。要求就是KKT条件。KKT条件和目标是充分必要的关系。

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值