降维技术
由于之前我们所分析的数据都只有两维,而在实际生活中我们获取到的数据不仅如此。有时候我们会展示三维图像或者只显示其相关特征,但是数据往往会有许多的特征。数据显示并非是大规模数据下的唯一难题,对数据进行化简还有以下原因:
- 使得数据集更容易使用
- 降低很多算法的计算开销
- 去除噪声
- 使得结果更易懂
下面介绍几种常用的降维技术:
- 主成分分析(PCA)。在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据方差最大的方向,第二个新坐标的选择和第一个坐标正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。我们可以看到大部分的方差都包含在前几个新坐标轴中。因此我们可以忽略余下的坐标,即对数据进行了降维处理。
- 因子分析。在因子分析中,我们假设在观察数据的生成中有一些观察不到的隐变量。假设观察数据是这些隐变量和某些噪声的线性组合。那么隐变量的数据可能会比观察数目的数据少,就是说可以通过找到隐变量就可以实现数据的降维。
- 独立成分分析(ICA)。ICA假设数据是从N个数据源生成的,这一点和因子分析有些类似。假设数据为多个数据的混合观察结果,这些数据之间在统计上是相互独立的,而在PCA中只假设数据是不相关的。同因子分析一样,如果数据源的数目少于观察数据的数目,则可以实现降维。
在上述三种降维办法中,PCA的使用最为广泛,下面主要介绍PCA的实现技术。
PCA
根据上面的介绍,PCA中第一个主成分是从数据集差异性最大的方向提取出来的,第二个主成分则来自于数据差异性次大的方向,并且与第一个主成分方向正交。通过数据集的协方差矩阵及其特征值分析,我们就可以求得这些主成分的值。
一旦得到了协方差矩阵和特征向量,我们就可以保留最大的N个值。这些特征向量也给出了N个最重要的特征的真实结构。我们可以通过数据乘上这N个特征向量而将它转换到新的空间。
算法实现
将数据转换成前N个主成分的伪代码如下:
去除平均值
计算协方差矩阵
计算协方差矩阵的特征值和特征向量
将特征值降序排列
保留前N个特征向量
将数据转换到上述N个特征向量构建的新空间中
具体的代码实现如下:
def pca(dataMat,topN=9999999):
'''
:param dataMat: 原始数据集
:param topN: 获取前N个最大特征向量
:return: 降维后的数据集和原始数据重构后的数据
'''
meanVals