机器学习—基于概率论的分类方法朴素贝叶斯

这篇博客深入探讨朴素贝叶斯分类方法,阐述其基本思想、条件概率和全概率原理。通过案例分析,解释了如何使用朴素贝叶斯进行文档分类和过滤垃圾邮件,并讨论了拉普拉斯修正解决零概率问题的重要性。
摘要由CSDN通过智能技术生成


前言

在深入了解朴素贝叶斯理论之前,我们先得明白以下几个点:

1、朴素贝叶斯的不同之处

回顾之前所学k-邻近算法和决策树,都是基于“对数据实例属于哪一个明确的类”的这样一个问题,作出艰难的回答。缺点就是会产生错误结果。
而这时我们可以要求分类器给出一个最优的类别结果猜测,同时给出这个猜测的概率估计值。

2、基本思想

先统计某个特征在数据集中取某个特定值的次数,然后除以数据集的实力总数,得到了特征取该值的概率。
利用python的文本处理能力将文档切分成词向量,然后利用词向量对文档分类。

3、条件概率

若只有两个事件A,B,那么,P(A|B) = P(AB)/P(B)。
意思是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。
在这里插入图片描述
分析:一般事件A和事件B一般是有交集的,若没有交集(互斥),则条件概率为0

用图更能容易的说明上述问题,我们进行某一实验,某一实验所有的可能的样本的结合为Ω(也即穷举实验的所有样本),圆圈A代表事件A所能囊括的所有样本,圆圈B代表事件B所能囊括的所有样本。

由图再来理解一下这个问题:“B已经发生的条件下,A发生的概率”,这句话中,“B已经发生”就相当于已经把样本的可选范围限制在了圆圈B中,其实就等价于这句话:“在圆圈B中,A发生的概率”,显然P(A|B)就等于AB交集中样本的数目/B的样本数目。

4、全概率

如果事件组B1,B2,… 满足
(1)、B1,B2…两两互斥,即 Bi ∩ Bj = ∅ ,i≠j , i,j=1,2,…,且P(Bi)>0,i=1,2,…;
(2)、B1∪B2∪…=Ω ,则称事件组 B1,B2,…是样本空间Ω的一个划分
设 B1,B2,…是样本空间Ω的一个划分,A为任一事件,则:
P(A)=P(A|B1)*P(B1) + P(A|B2)*P(B2) + … + P(A|Bn)*P(Bn).

以下图为例,P(A)= P(A|B1)*P(B1) + P(A|B2)*P(B2) +P(A|B3)*P(B3) + P(A|B4)*P(B4)在这里插入图片描述

基于贝叶斯决策理论的分类方法

1、MAP分类准则

MAP: Maximum A Posterior
x 属于类别 c* 的概率:P(C=c*|X=x)>P(C=c|X=x) , c≠c*, c=c1,c2,…,cL

下面举个例子,已知有一个数据集,它由两类数据组成,如下图:
在这里插入图片描述
我们用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y),可以用下面的规则来判断它的类别:

如果p1(x,y) > p2(x,y),那么类别为1
如果p1(x,y) < p2(x,y),那么类别为2

也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有最高概率的决策。

如果不用贝叶斯决策理论:
1、使用第1章的 kNN,进行1000次距离计算;
2、使用第2章的决策树,分别沿x轴、y轴划分数据;

kNN算法效率会非常低
决策树在划分数据时会遇到困难,选出最优分类的时候不能很好解决。倘若不止两个轴,那么计算量更是成倍增加。

2、贝叶斯公式

与全概率公式解决的问题相反,贝叶斯公式是建立在条件概率的基础上寻找事件发生的原因(即大事件A已经发生的条件下,分割中的小事件Bi的概率),设B1,B2,…是样本空间Ω的一个划分,则对任一事件A(P(A)>0),有
在这里插入图片描述

上式即为贝叶斯公式(Bayes formula),Bi 常被视为导致试验结果A发生的”原因“,P(Bi)(i=1,2,…)表示各种原因发生的可能性大小,故称先验概率;
P(Bi|A)(i=1,2…)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。

如何更好的理解?看下图(当i=4时,黄色部分):
在这里插入图片描述

3、先验概率

先抛出一个问题:假设要猜测某西瓜的好坏问题,如何判断正反概率?

根据自己购买西瓜的经验,好瓜的概率是p(好瓜)=0.6,坏瓜概率是p(坏瓜)=0.4

则可将p(好瓜)=0.6,p(坏瓜)=0.4作为先验概率,也就是观测新样本前就已知的先验分布p(y)

概念:P(cj)代表还没有训练模型之前,根据历史数据/经验估算cj 拥有的初始概率。P(cj)常被称为cj的先验概率(prior probability) , 它反映了cj的概率分布,该分布独立于样本。 通常可以用样例中属于cj的样例数|cj|比上总样例数|D|来 近似。

4、后验概率

西瓜好坏的概率和其属性有关; 当观测到西瓜样本(属性取值)x时,它为好瓜概率是多少?

p(y=1|x), p(y=0|x)

后验概率:观测到 x 后对结果 y 的估计;

后验概率给定数据样本x时cj成立的概率P(cj | x )被称为后验概率 (posterior probability),
因为它反映了在看到数据样本 x 后 cj成立的置信度。 大部分机器学习模型尝试得到后验概率。

5、朴素贝叶斯分类器

朴素贝叶斯分类器(Naïve Bayes Classifier)采用了“属性条件独立性 假设”,即每个属性独立地对分类结果发生影响。
在这里插入图片描述
其中d为属性数目,Bi为 B 在第i个属性上的取值
对于所有类别来说P(B)都相同,所以只需要计算比较分子即可。
在这里插入图片描述
在这里插入图片描述

6、基于朴素贝叶斯分类器的案例

这个是出自于课堂ppt的案例,但还是希望在博客里复现一遍:

例子:用西瓜数据集训练一个朴素贝叶斯分类器,对下面的测试例进行分类,判断是不是好瓜
在这里插入图片描述
然后我们根据给定的属性值去训练集中找出来相应的数据,计算:
在这里插入图片描述
在这里插入图片描述
注意因为密度不是离散,是连续的,区分:
对比:
在这里插入图片描述

在这里插入图片描述

7、拉普拉斯修正

零概率问题: 在计算事件的概率时,如果某个事件在观察样本库(训练集)中没有出现过,会导致该事件的概率结果是0。这是不合理的,不能因为一个事件没有观察到,就被认为该事件一定不可能发生(即该事件的概率为0)。

拉普拉斯平滑是为了解决零概率的问题。

法国数学家拉普拉斯最早提出用加1的方法,估计没有出现过的现象的概率。拉普拉斯平滑,又叫加一平滑,它对分子划分的计数加1,分母加类别数。
理论假设:假定训练样本很大时,每个分量x的计数加1造成的估计概率变化可以忽略不计,但可以方便有效的避免零概率问题。

文档分类问题

整个文档如电子邮件是一个实例,文档中的某些元素构成特征。我们可以统计文档中出现的词,并用它出现或不出现,出现次数作为特征。这样就可以用一个长度统一,内容是特征的向量来描述文档。

朴素贝叶斯中朴素naive的含义是每个特征互相独立,所以根据乘法原理,总概率为各特征相乘。

Python中为了防止下溢出通常计算log(prob),把相乘操作转换为相加。

1、准备数据:从文本中构建词向量

将文本中的段落句子看成单词向量。从文档中的所有单词帅选出哪些单词纳入词汇表,然后必须要将每一篇文档转换为词汇表上的向量。这里有一组已经切分完成的文本,将单词存放到列表中,并对词汇向量进行分类标注:

1、创建实验样本:

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,c
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值