logistic回归的梯度计算

在logistic回归中,假设我们的训练集由m个已标记样本组成:\[\{ ({x^{(1)}},{y^{(1)}}),...,({x^{(m)}},{y^{(m)}})\} \]且激活函数为sigmoid函数:\[{h_\theta }(x) = \frac{1}{ {1 + {e^{ - {\theta ^T}x}}}}\]损失函数为:\[J(\theta ) =  - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}} \cdot log{h_\theta }({x^{(i)}}) + (1 - {y^{(i)}}) \cdot log(1 - {h_\theta }({x^{(i)}}))]} \]则损失函数对参数的梯度的第j个分量为:\[\begin{gathered}
  {\nabla _{ {\theta _{\text{j}}}}}J(\theta ) &=&  - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}} \cdot \frac{1}{ { {h_\theta }({x^{(i)}})}} \cdot ( - {h_\theta }^2({x^{(i)}})) \cdot {e^{ - {\theta ^T}{x^{(i)}}}} \cdot ( - {x^{(i)}})}  \\
 &&  + (1 - {y^{(i)}}) \cdot \frac{1}{ {1 - {h_\theta }({x^{(i)}})}} \cdot {h_\theta }^2({x^{(i)}}) \cdot {e^{ - {\theta ^T}{x^{(i)}}}} \cdot ( - {x^{(i)}})] \\
   &= & - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}{h_\theta }({x^
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值