【树】问题 A: 复原二叉树

6 篇文章 0 订阅
5 篇文章 0 订阅
题目描述

小明在做数据结构的作业,其中一题是给你一棵二叉树的前序遍历和中序遍历结果,要求你写出这棵二叉树的后序遍历结果。

输入

输入包含多组测试数据。每组输入包含两个字符串,分别表示二叉树的前序遍历和中序遍历结果。每个字符串由不重复的大写字母组成。

输出

对于每组输入,输出对应的二叉树的后续遍历结果。

样例输入 复制
DBACEGF ABCDEFG
BCAD CBAD
样例输出 复制
ACBFGED
CDAB
分析:

本题可以先利用先序排列和中序排列构造一棵二叉树,随后对该树进行后序遍历获得后续排列。根据每次先序排列的第一个元素确定每颗树或者子树的根结点元素,然后利用该元素在中序排列中的位置划分左子树和右子树,分别对两颗子树进行相同的操作。由此可见,可以利用递归/DFS完成,当子树中元素数量为空时表示“死胡同”,每次划分子树对左右子树进行操作则为“岔道口”。

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;

char pre[27], in[27];
struct node{
    char data;
    node* lchild, *rchild;
};
node* createTree(int preL, int preR, int inL, int inR){
    if(preL > preR){
        return NULL;
    }

    node* newNode = new node;
    newNode -> data = pre[preL];
    int k;
    for(k = inL; k <= inR; k++){
        if(in[k] == pre[preL]) break;
    }
    int numLeft = k - inL;

    newNode -> lchild = createTree(preL + 1, preL + numLeft, inL, k - 1);
    newNode -> rchild = createTree(preL + 1 + numLeft, preR, k + 1, inR);
    return newNode;
}
void postorder(node* root){
    if(root == NULL){
        return;
    }

    postorder(root -> lchild);
    postorder(root -> rchild);
    printf("%c", root -> data);
}
int main()
{
    /*ios::sync_with_stdio(false);
    cin.tie(0);*/

    while(scanf("%s %s", pre, in) != EOF){
        node* T = createTree(0, strlen(pre) - 1, 0, strlen(in) - 1);
        postorder(T);
        printf("\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值