华农专业课拯救计划:佛洛依德算法

1.问题整体复制,让你更快的找到我

【问题描述】

对于下面一张若干个城市,以及城市之间距离的地图,请采用弗洛伊德算法求出所有城市之间的最短路径。

QQ图片20200509104638.png

【输入形式】

顶点个数n,以及n*n的邻接矩阵,其中不可达使用9999代替

【输出形式】

每两个顶点之间的最短路径和经过的顶点

注意:顶点自身到自身的dist值为0,path则为该顶点的编号

【样例输入】

4

9999 4 11 9999

6 9999 2 9999

1 9999 9999 1

9999 3 9999 9999

【样例输出】

from 0 to 0: dist = 0 path:0
from 0 to 1: dist = 4 path:0 1
from 0 to 2: dist = 6 path:0 1 2
from 0 to 3: dist = 7 path:0 1 2 3
from 1 to 0: dist = 3 path:1 2 0
from 1 to 1: dist = 0 path:1
from 1 to 2: dist = 2 path:1 2
from 1 to 3: dist = 3 path:1 2 3
from 2 to 0: dist = 1 path:2 0
from 2 to 1: dist = 4 path:2 3 1
from 2 to 2: dist = 0 path:2
from 2 to 3: dist = 1 path:2 3
from 3 to 0: dist = 6 path:3 1 2 0
from 3 to 1: dist = 3 path:3 1
from 3 to 2: dist = 5 path:3 1 2
from 3 to 3: dist = 0 path:3

2.不多废话,先复制代码


#include<iostream>
using namespace std;
const int size1 = 100;
const int big = 9999;
typedef struct grap
{
    int edge[size1][size1];
    int nump;
    int nume;
}grape;
void creat(grape& G)
{
    cin >> G.nump;
    for (int i = 0; i < G.nump; i++)
    {
        for (int j = 0; j < G.nump; j++)
        {
            cin >> G.edge[i][j];
            G.nume++;
        }
    }
}
void shortpath(int path[][size1], int i, int j)
{
    int k = path[i][j];
    if (k)
    {
        shortpath(path, i, k);
        cout << k << ' ';
        shortpath(path, k, j);
    }
}
void fl(grape g)
{
    int dis[size1][size1];
    int path[size1][size1];
    for (int i = 0; i < g.nump; i++)
    {
        for (int j = 0; j < g.nump; j++)
        {
            dis[i][j] = g.edge[i][j];
            path[i][j] = 0;
        }
        dis[i][i] = 0;
    }
    for (int k = 0; k < g.nump; k++)
    {
        for (int i = 0; i < g.nump; i++)
        {
            if (dis[i][k] < big)
            {
                for (int j = 0; j < g.nump; j++)
                {
                    if (dis[i][k] + dis[k][j] < dis[i][j])
                    {
                        dis[i][j] = dis[k][j] + dis[i][k];
                        path[i][j] = k;
                    }
                }
            }
        }
   }
    for (int i = 0; i < g.nump; i++)
    {
        for (int j = 0; j < g.nump; j++)
        {
            if (dis[i][j] == 0) cout << "from " << i << " to " << j << ": dist = 0 path:" << i << endl;
            else
            {
                cout << "from " << i << " to " << j << ": dist = " << dis[i][j];
                cout << " path:" << i << " ";
                shortpath(path, i, j);
                cout << j << endl;
            }
        }
    }
}
int main()
{
   grape g;
    creat(g);
    fl(g);
    return 0;
}

3.简单聊聊思想

首先解释一下变量们,size1代表数组的长度,big代表没有权值时的矩阵初始化,结构体grape代表图,edge代表零阶矩阵,nump代表顶点数量 ,nume代表边的数量,creat函数代表初始化grape数组,然后是主要函数fl,dis数组存储的是距离,dis[i][j]代表从i到j的最短距离,path数组存储着路径,path[i][j]表示从i到j的最短路径之间的顶点,首先将dis数组初始化为每条边的值,再将path数组初始化为0,再将dis数组的主对角线赋值为0,因为自己到自己的距离为0,然后对零阶矩阵进行遍历,如果两个点之间的距离不是big,表示着两个点之间有边,则以边的终点为起点进行探索,遍历各个顶点,如果原边的距离+原边终点到某顶点的距离小于原边的起点到某顶点的距离,则对对应的dis数组与path数组进行更新,然后就是打印函数,为从i到j的打印函数,如果该点的dis为0,也就是主对角线,直接打印,否则在直接打印部分数据的基础上,还需要调用打印函数shortpath,也就是一个简单递归函数

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值