DiskANN十亿级规模向量检索方案论文浅谈

本文详细介绍了DiskANN论文,该技术旨在实现快速且精确的十亿点近邻搜索。通过k-means对大数据集进行划分,并解决子集不平衡和边界问题。论文提出使用Vamana、NSG和HNSW等方法,探讨了最大出度对搜索性能的影响,并指出实际平均出度可能是更重要的指标。此外,还讨论了如何通过索引布局、集簇搜索和缓存优化来减少磁盘I/O操作。文章最后提出了增大α对增加边数而非长边的误解,并指出获取更远候选邻居是关键。

个人主页:mzwang.top

论文信息

题目:DiskANN: Fast Accurate Billion-point Nearest Neighbor Search on a Single Node

作者:Suhas Jayaram Subramanya, Devvrit, Rohan Kadekodi, Ravishankar Krishaswamy, Harsha Vardhan Simhadri; 发表于NeurIPS 2019

前言

一些优秀的中文解读:(1)https://www.jianshu.com/p/07ed2202f107(简书);(2)https://mp.weixin.qq.com/s/KgjpRGF4AoUskFESZR4lxQ(微信)

一些相关资料:https://mp.weixin.qq.com/s/WQcO5tLMwVODHeOtrNvo7A(微信)

概览

之前读这篇论文并做了简单记录,再读这篇论文,我主要考虑以下几个问题:

(1)如何划分大数据集?在划分数据集时存在的两个普遍问题,即子集不平衡问题和相邻子集的边界问题,是如何解决的?

(2)数据集划分后,分别在每个子集构建子图,而后子图如何合并?

(3)文中裁边时的 α \alpha α​​是如何影响搜索时磁盘IO次数的?想看到实验研究和相应的观测分析。

(4)对文中其他减少磁盘IO次数的方案的实验研究。</

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值