该论文是华盛顿大学人工智能研究院的文章。本博文是博主学习论文过程中的一些理解和看法,仅供学习和交流。如有疑问,欢迎留言。
论文链接:https://arxiv.org/abs/1705.06368
论文源码暂时没有放出。
这是CVPR2017放出来之前,跟踪领域的又一篇新颖之作。文章思路并不复杂,网络结构是CNN+两个LSTM,其中CNN负责学习物体的appearance feature,第一个LSTM学习物体的motion feature,第二个LSTM负责做regeression,即输出目标框的对角坐标。算法具体的crop技巧请参看原文。
首先,在跟踪领域,RNN并不是第一次应用。这里推荐两篇使用RNN来做跟踪的论文,鉴于博主不熟悉RNN,也就班门弄斧了。
RTT(CVPR16)
Recurrently Target-Attending Tracking
http://w