论文阅读《Re3: Real-Time Recurrent Regression Networks for Object Tracking》

本文介绍了华盛顿大学人工智能研究院的论文《Re3: Real-Time Recurrent Regression Networks for Object Tracking》,该研究结合CNN和LSTM进行目标跟踪。论文亮点在于其离线训练的tracker,不进行反向传播更新,实现150fps的速度。尽管如此,RNN的状态在前向传播中更新,确保网络不断学习。作者强调motion特征在跟踪中的重要性,并指出跟踪领域可以借鉴视频识别中的时空信息融合策略。
摘要由CSDN通过智能技术生成

该论文是华盛顿大学人工智能研究院的文章。本博文是博主学习论文过程中的一些理解和看法,仅供学习和交流。如有疑问,欢迎留言。

论文链接:https://arxiv.org/abs/1705.06368
论文源码暂时没有放出。

这是CVPR2017放出来之前,跟踪领域的又一篇新颖之作。文章思路并不复杂,网络结构是CNN+两个LSTM,其中CNN负责学习物体的appearance feature,第一个LSTM学习物体的motion feature,第二个LSTM负责做regeression,即输出目标框的对角坐标。算法具体的crop技巧请参看原文。

这里写图片描述

首先,在跟踪领域,RNN并不是第一次应用。这里推荐两篇使用RNN来做跟踪的论文,鉴于博主不熟悉RNN,也就班门弄斧了。

RTT(CVPR16)
Recurrently Target-Attending Tracking
http://w

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值