阿里EGES

EGES:Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba

阿里的EGES是Graph Embedding的一个经典应用,在内容冷启和物料召回上面有较多的落地潜力。主要思想是根据用户交互的物料作为节点构建物料图,在传统的DeepWalk学习节点Embedding的基础上,使用attention融合节点的side information,使得学习到的物料Embedding包含更丰富、精准的信息。

动机

为了解决淘宝推荐的三大挑战:

  1. Scalability 扩展性,淘宝有十亿量级的用户和二十亿量级的物料
  2. Sparsity 稀疏性,很多用户有交互的物料非常少,用户或者物料很难学习的充分
  3. Cold Start 冷启动问题,每小时有上百万的新物料上线,新物料的推荐是个很大的问题
优化目标

给定图 G = ( V , E ) G = (V, E) G=(V,E) V V V表示节点集合, E E E表示边集合,目标是学习一个映射函数 Φ : V → R d \Phi : V \rightarrow R^d Φ:VRd,使得每个节点 v ∈ V v \in V vV映射成一个 d d d维向量。

使用DeepWalk方式学习Graph Embedding,DeepWalk使用Word2vec来学习图的节点表示。应用Skip-gram来优化,表示如下。
min ⁡ Φ = ∑ v ∑ c ∈ N ( v ) P r ( c ∣ Φ ( v ) ) \min_{\Phi} = \sum_v \sum_{c \in N(v)} Pr(c \vert \Phi(v)) Φmin=vcN(v)Pr(c∣Φ(v))

构建图

构建有向图,采样节点序列。需要做清洗:点击后停留不超过1s的行为去掉;3个月内购买超过1000个物料或者超过3500个点击的用户去掉;对于物料ID不变但是内容有更新的物料去掉。
在这里插入图片描述
随机游走的节点转移概率定义如下, M M M表示节点的邻接矩阵, M i j M_{ij} Mij表示节点 i i i到节点 j j j的权重,节点的权重定位为相邻节点 i i i跳转到节点 j j j的频率。
P ( v j ∣ v i ) = { M i j ∑ j ∈ N + ( v i ) M i j v j ∈ N + ( v i ) 0 e i j ∉ E P(v_j|v_i)= \begin{cases} \frac {M_{ij}} {\sum_{j \in N_+(v_i) M_{ij}}} & \text v_j \in N_+(v_i)\\ 0& \text e_{ij} \notin E \end{cases} P(vjvi)={jN+(vi)MijMij0vjN+(vi)eij/E
然后应用优化目标
min ⁡ Φ = − log ⁡ P r ( ( v i − w , . . . , v i + w ) \ v i ∣ Φ ( v i ) ) \min_{\Phi} = - \log Pr( (v_{i-w}, ..., v_{i+w} ) \backslash v_i \vert \Phi (v_i)) Φmin=logPr((viw,...,vi+w)\vi∣Φ(vi))
其中 w w w是窗口大小,使用节点独立性假设
P r ( ( v i − w , . . . , v i + w ) \ v i ∣ Φ ( v i ) ) = ∏ j = i − w , j ≠ i i + w P r ( v j ∣ Φ ( v i ) ) Pr( (v_{i-w}, ..., v_{i+w} ) \backslash v_i \vert \Phi (v_i)) = \prod_{j=i-w,j \neq i}^{i+w} Pr(v_j \vert \Phi (v_i)) Pr((viw,...,vi+w)\vi∣Φ(vi))=j=iw,j=ii+wPr(vj∣Φ(vi))
基于负采样方法, N ( v i ) ′ N(v_i)' N(vi)表示节点 v i v_i vi的负采样,可以得到优化目标的详细形式
min ⁡ Φ = log ⁡ σ ( Φ ( v i ) T Φ ( v j ) ) + ∑ t ∈ N ( v i ) ′ log ⁡ σ ( − Φ ( v t ) Φ ( v i ) ) \min_{\Phi} = \log \sigma (\Phi(v_i)^T \Phi(v_j) ) + \sum_{t \in N(v_i)'} \log \sigma (- \Phi(v_t) \Phi(v_i)) Φmin=logσ(Φ(vi)TΦ(vj))+tN(vi)logσ(Φ(vt)Φ(vi))

GES:Graph Embedding with Side Information

除了物料ID之外,还可以加入其他的物料信息,比如物料一级类目、二级类目、所属商家、所属店铺等信息, W W W表示物料ID的Embedding矩阵,其中 W v 0 W_v^0 Wv0表示物料节点 v v v的ID的Embedding, W v s W_v^s Wvs表示第 s s s个sideinfo, H v H_v Hv表示融合之后的Embedding
H v = 1 n + 1 ∑ s = 0 n W v s H_v = \frac {1} {n+1} \sum_{s = 0}^n W_v^s Hv=n+11s=0nWvs

EGES:Enhanced Graph Embedding with Side Information

上面各个sideinfo融合的时候权重是一样的,实际情况肯定是不同的sideinfo权重不一样,设置不同的权重更符合事实。设置一个权重矩阵 A ∈ R ∣ V ∣ × ( n + 1 ) A \in R^{|V| \times (n+1)} ARV×(n+1) 表示各个节点在各个sideinfo上面的权重,融合后的Embedding为
H v = ∑ j = 0 n e a v j W v j ∑ j = 0 n e a v j H_v = \frac {\sum_{j=0}^n e^{a_v^j} W_v^j } { \sum_{j=0}^n e^{a_v^j} } Hv=j=0neavjj=0neavjWvj

学习算法

节点 v v v的Embedding是 H v H_v Hv,节点 v v v的一个邻居节点的Embedding表示为 Z u ∈ R d Z_u \in R^d ZuRd,label为 y y y,那么代入上面的优化目标,可以得到

L ( v , u , y ) = − [ y log ⁡ ( σ ( H v T Z u ) ) + ( 1 − y ) log ⁡ ( 1 − σ ( H v T Z u ) ) ] L(v,u,y) = - [ y \log (\sigma (H_v^TZ_u)) + (1-y) \log (1 - \sigma(H_v^TZ_u) ) ] L(v,u,y)=[ylog(σ(HvTZu))+(1y)log(1σ(HvTZu))]
梯度求解如下
在这里插入图片描述
算法步骤
在这里插入图片描述
在这里插入图片描述

实验结果

在这里插入图片描述

DeepWalk相关

EGES使用了DeepWalk作为Graph节点Embedding的学习,这里简要回顾下DeepWalk。

DeepWalk优缺点:

优点:
首个将自然语言处理和深度学习应用到图机器学习中
稀疏数据场景性能很好

缺点:
随机均匀游走
需要大量随机游走序列
学到的是局部信息,很难学到全局信息
仅利用到节点的连接信息,没有利用节点的属性
使用的是word2vec,网络层级不深

DeepWalk的主要思想是将图中节点进行采样得到一系列节点序列,将这些节点序列看做句子,节点看做词汇,套用自然语言处理处理领域的word2vec对节点进行无监督编码处理,得到节点Embedding。使得在图结构中比较接近的节点的Embedding在向量空间中也比较接近。

如下图所示,图中比较接近的点编码后的Embedding(二维,d=2)在向量空间上也是比较接近。
在这里插入图片描述

为什么可以套用Word2vec

因为自然语言处理中,句子中的词汇的分布是幂律分布,少量的词大量使用,有大量的长尾词汇。而一个现实的图中,也是少量的节点有大量的连接(度),大部分节点的度比较少,二八定律也非常明显,因此随机采样的节点序列也是符合幂律分布的,因此可以套用。
在这里插入图片描述

使用skip-gram算法,用中心词预测周围词, w w w表示窗口大小
min ⁡ Φ = − log ⁡ P r ( ( v i − w , . . . , v i + w ) \ v i ∣ Φ ( v i ) ) \min_{\Phi} = - \log Pr( (v_{i-w}, ..., v_{i+w} ) \backslash v_i \vert \Phi (v_i)) Φmin=logPr((viw,...,vi+w)\vi∣Φ(vi))

DeepWalk算法步骤

设定好窗口大小 w w w,Embedding大小 d d d,每个节点随机游走的次数 γ \gamma γ,游走的序列长度 t t t
在这里插入图片描述

在这里插入图片描述

实验结果

因为是无监督产生的Embedding结果,实验评估的时候讲这些Embedding作为中间结果来做多分类,计算F1值,可以看到标注的label比例越大,DeepWalk效果越好。
在这里插入图片描述
在这里插入图片描述
节点的游走次数 γ \gamma γ对效果的影响,大概在 γ > 10 \gamma > 10 γ>10之后效果增长缓慢。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值