概率论期末复习习题2

记录一下备考时的练习题目。

t15

设随机变量 X 的分布函数为
F ( x ) = { 0 , x < 0 , 1 2 , 0 ≤ x < 1 , 1 − e − x , x ≥ 1 , F(x)=\left\{\begin{array}{c} 0, & x<0, \\ \frac{1}{2}, & 0 \leq x<1, \\ 1-e^{-x}, & x \geq 1, \end{array}\right. F(x)= 0,21,1ex,x<0,0x<1,x1,

P { X = 1 } P\{X=1\} P{X=1}

解析

根据事件概率与分布函数极限的关系有
P { X = 1 } = lim ⁡ x → 1 + F ( x ) − lim ⁡ x → 1 − F ( x ) = 1 − e − 1 − 1 2 = 1 2 − e − 1 P\{X=1\}=\lim _{x \rightarrow 1^{+}} F(x)-\lim _{x \rightarrow 1^{-}} F(x)=1-e^{-1}-\frac{1}{2}=\frac{1}{2}-e^{-1} P{X=1}=x1+limF(x)x1limF(x)=1e121=21e1

随机变量的分布,《知识点总结》的 § 2.1 \S 2.1 §2.1


t16

设随机变量 X X X 的分布函数为
F ( x ) = { 0 , x < 0 , 1 / 4 , 0 ⩽ x < 1 1 / 3 , 1 ⩽ x < 3 1 / 2 , 3 ⩽ x < 6 , 1 , x ⩾ 6. ,  F(x)=\left\{\begin{array}{ll} 0, & x<0, \\ 1 / 4, & 0 \leqslant x<1 \\ 1 / 3, & 1 \leqslant x<3 \\ 1 / 2, & 3 \leqslant x<6, \\ 1, & x \geqslant 6 . \end{array}\right. \text {, } F(x)= 0,1/4,1/3,1/2,1,x<0,0x<11x<33x<6,x6.

试求 X X X 的概率分布列及 P ( X < 3 ) , P ( X ⩽ 3 ) , P ( X > 1 ) , P ( X ⩾ 1 ) P(X<3), P(X \leqslant 3), P(X>1), P(X \geqslant 1) P(X<3),P(X3),P(X>1),P(X1).

解析

大致想象一下 F ( x ) F(x) F(x) 的图像为阶梯状,这对应离散随机变量的分布函数形状,所以可以写出 X X X 的分布列:

X X X 的概率分布列为
X 0 1 3 6 P 1 4 1 12 1 6 1 2 \begin{array}{c|cccc} \hline X & 0 & 1 & 3 & 6 \\ \hline P & \dfrac{1}{4} & \dfrac{1}{12} & \dfrac{1}{6} & \dfrac{1}{2} \\ \hline \end{array} XP0411121361621
可以看到在 F ( x ) F(x) F(x) 中分段点的值为 X X X 的取值。
P ( X < 3 ) = P ( X = 0 ) + P ( X = 1 ) = 1 3 , P ( X ⩽ 3 ) = 1 − P ( X = 6 ) = 1 2 , P ( X > 1 ) = P ( X = 3 ) + P ( X = 6 ) = 2 3 , P ( X ⩾ 1 ) = 1 − P ( X = 0 ) = 3 4 . \begin{array}{ll} P(X<3)=P(X=0)+P(X=1)=\dfrac{1}{3}, & P(X \leqslant 3)=1-P(X=6)=\dfrac{1}{2}, \\ P(X>1)=P(X=3)+P(X=6)=\dfrac{2}{3}, & P(X \geqslant 1)=1-P(X=0)=\dfrac{3}{4} . \end{array} P(X<3)=P(X=0)+P(X=1)=31,P(X>1)=P(X=3)+P(X=6)=32,P(X3)=1P(X=6)=21,P(X1)=1P(X=0)=43.

随机变量的分布,《知识点总结》的 § 2.1 \S 2.1 §2.1


t17

设随机变量 X X X 的概率密度为 f ( x ) = { 1 − C ∣ x ∣ , − 1 < x < 1 0 ,  其他  f(x)=\left\{\begin{array}{c}1-C|x|,-1<x<1 \\ 0, \text { 其他 }\end{array}\right. f(x)={1Cx,1<x<10, 其他 

(1)求 C C C 的值;

(2)求 Y = X 2 + 1 Y=X^2+1 Y=X2+1 的概率密度。

解析

(1)利用密度函数的正则性:
1 = ∫ − ∞ ∞ f ( x ) d x = ∫ − 1 1 [ 1 − C ∣ x ∣ ] d x = 2 ∫ 0 1 ( 1 − C x ) d x = 2 − C 1=\int_{-\infty}^{\infty}f(x)dx=\int_{-1}^{1}\left[1-C|x|\right]dx=2\int_{0}^{1}\left(1-Cx\right)dx=2-C 1=f(x)dx=11[1Cx]dx=201(1Cx)dx=2C

⇒ C = 1 \Rightarrow C=1 C=1

(2)由于
F Y ( y ) = P Y { Y ⩽ y } = P X { X 2 + 1 ⩽ y } = P X { X 2 ⩽ y − 1 } = { 0 , y < 1 P { − y − 1 ⩽ X ⩽ y − 1 } , 1 ⩽ y < 2 1 , y ⩾ 2 \begin{aligned} & F_Y(y)=P_Y\{Y \leqslant y\}=P_X\left\{X^2+1 \leqslant y\right\}=P_X\left\{X^2 \leqslant y-1\right\} \\ & =\left\{\begin{array}{cc} 0, & y<1 \\ P\{-\sqrt{y-1} \leqslant X \leqslant \sqrt{y-1}\}, & 1 \leqslant y<2 \\ 1, & y \geqslant 2 \end{array}\right. \\ & \end{aligned} FY(y)=PY{Yy}=PX{X2+1y}=PX{X2y1}= 0,P{y1 Xy1 },1,y<11y<2y2

故当 1 ⩽ y < 2 1 \leqslant y<2 1y<2 时, 有
F Y ( y ) = ∫ − y − 1 y − 1 ( 1 − ∣ x ∣ ) d x = 2 ∫ 0 y − 1 ( 1 − x ) d x = 1 − ( 1 − y − 1 ) 2 F_Y(y)=\int_{-\sqrt{y-1}}^{\sqrt{y-1}}(1-|x|) \mathrm{d} x=2 \int_0^{\sqrt{y-1}}(1-x) \mathrm{d} x=1-(1-\sqrt{y-1})^2 FY(y)=y1 y1 (1x)dx=20y1 (1x)dx=1(1y1 )2
Y Y Y 的分布函数为
F y ( y ) = { 0 , y < 1 1 − ( 1 − y − 1 ) 2 , 1 ⩽ y < 2 1 , y ⩾ 2 F_y(y)=\left\{\begin{array}{cc} 0, & y<1 \\ 1-(1-\sqrt{y-1})^2, & 1 \leqslant y<2 \\ 1, & y \geqslant 2 \end{array}\right. Fy(y)= 0,1(1y1 )2,1,y<11y<2y2
Y Y Y 的密度函数为
f Y ( y ) = { 1 y − 1 − 1 , 1 < y < 2 0 ,  其他  f_Y(y)=\left\{\begin{array}{cc} \frac{1}{\sqrt{y-1}}-1, & 1<y<2 \\ 0, & \text { 其他 } \end{array}\right. fY(y)={y1 11,0,1<y<2 其他 
p s : ps: ps: 一个检查 Y Y Y 密度函数正确性的技巧, Y Y Y 的密度函数不为 0 0 0 的区间,一定是 X X X 不为 0 0 0 的区间通过变换得到的。比如 t 17 t17 t17 X X X 的密度函数不为 0 0 0 的区间为 ( − 1 , 1 ) (-1,1) (1,1) ,则 X 2 + 1 X^2+1 X2+1 后变为 ( 1 , 2 ) (1,2) (1,2) ,即 Y Y Y 密度函数不为 0 0 0 的区间。

随机变量的分布,分布函数与概率密度函数,随机变量函数的分布《知识点总结》的 § 2.1 、 2.6 \S 2.1 、2.6 §2.12.6


t18

设随机变量 X X X 的期望存在,概率密度 p ( x ) p(x) p(x) 关于 x = μ x=\mu x=μ 对称: p ( μ + x ) = p ( μ − x ) p(\mu+x)=p(\mu-x) p(μ+x)=p(μx) ,证明: E ( x ) = μ E(x)=\mu E(x)=μ.

解析

E ( X ) = ∫ − ∞ ∞ x p ( x ) d x = ∫ − ∞ ∞ μ p ( x ) d x + ∫ − ∞ ∞ ( x − μ ) p ( x ) d x ( 第一项积值为 μ ,是对照结果凑出来的 μ ) = μ ∫ − ∞ ∞ p ( x ) d x + ∫ − ∞ ∞ ( x − μ ) p ( x ) d x = μ + ∫ − ∞ ∞ ( x − μ ) p ( x ) d x  (第二项考虑对称消去)  = μ + ∫ − ∞ + ∞ t p ( t + μ ) d t (令 t = x − μ ) = μ \begin{array}{ll} E(X)&=\displaystyle\int_{-\infty}^{\infty} x p(x) d x=\int_{-\infty}^{\infty} \mu p(x) d x+\int_{-\infty}^{\infty}(x-\mu) p(x) d x \quad(第一项积值为 \mu ,是对照结果凑出来的\mu) \\ &=\displaystyle\mu \int_{-\infty}^{\infty} p(x) d x+\int_{-\infty}^{\infty}(x-\mu) p(x) d x=\mu+\int_{-\infty}^{\infty}(x-\mu) p(x) d x \quad\text { (第二项考虑对称消去) }\\ &= \mu+\displaystyle\int_{-\infty}^{+\infty} t p(t+\mu) dt \quad \text{(令$t=x-\mu$)}\\ &= \mu \\ \end{array} E(X)=xp(x)dx=μp(x)dx+(xμ)p(x)dx(第一项积值为μ,是对照结果凑出来的μ)=μp(x)dx+(xμ)p(x)dx=μ+(xμ)p(x)dx (第二项考虑对称消去=μ++tp(t+μ)dt(t=xμ)=μ

 记  f ( t ) = t p ( t + μ ) f ( − t ) = − t p ( μ − t ) = − t p ( t + μ ) ⇒ f ( t ) + f ( − t ) = 0 f ( t )  为奇函数,所以后一项积分值为0 \quad \text { 记 } f(t) =t p(t+\mu) \quad f(-t)=-t p(\mu-t)=-t p(t+\mu) \Rightarrow f(t)+f(-t)=0 \quad f(t) \text { 为奇函数,所以后一项积分值为0}   f(t)=tp(t+μ)f(t)=tp(μt)=tp(t+μ)f(t)+f(t)=0f(t) 为奇函数,所以后一项积分值为0


t19

国际市场上对我国某种出口商品的每年需求量是个随机变量 X X X (吨). X X X 服从区间 [ 300 , 500 ] [300,500] [300,500] 上的均匀分布.每销售出一吨商品, 可为国家赚取外汇1.5千元; 若销售不出, 则每吨商品需贮存费 0.5 千元. 求: 应组织多少货源,才能使平均收益最大?

解析

设组织该货源 a a a 吨. 则显然应该有 300 ⩽ a ⩽ 500 300 \leqslant a \leqslant 500 300a500. 又记 Y Y Y 为在 a a a 吨货源的条件下的收益额 (单位:千元), 则收益额 Y Y Y 为需求量 X X X 的函数, 即 Y = g ( X ) Y=g(X) Y=g(X). 由题设条件知: 当 X ⩾ a X \geqslant a Xa 时, 则此 a a a 吨货源全部售出, 共获利 1.5 a 1.5 a 1.5a. 当 X < a X<a X<a 时, 则售出 X X X 吨 (获利 1.5 X 1.5 X 1.5X ), 且还有 a − X a-X aX 吨积压 (获利 − 0.5 ( a − X ) -0.5(a-X) 0.5(aX) ), 所以共获利 1.5 X − 0.5 ( a − X ) 1.5 X-0.5(a-X) 1.5X0.5(aX),由此知
g ( X ) = { 1.5 a ,  若  X ⩾ a , 1.5 X − 0.5 ( a − X ) ,  若  X < a = { 1.5 a ,  若  X ⩾ a , 2 X − 0.5 a ,  若  X < a . g(X)=\left\{\begin{array}{ll} 1.5 a, & \text { 若 } X \geqslant a, \\ 1.5 X-0.5(a-X), & \text { 若 } X<a \end{array}= \begin{cases}1.5 a, & \text { 若 } X \geqslant a, \\ 2 X-0.5 a, & \text { 若 } X<a .\end{cases}\right. g(X)={1.5a,1.5X0.5(aX),  Xa,  X<a={1.5a,2X0.5a,  Xa,  X<a.

E ( Y ) = ∫ − ∞ ∞ g ( x ) p X ( x ) d x = ∫ 300 500 g ( x ) 1 200   d x = 1 200 ( ∫ a 500 1.5 a   d x + ∫ 300 a ( 2 x − 0.5 a ) d x ) = 1 200 ( − a 2 + 900 a − 30 0 2 ) . \begin{aligned} E(Y)&=\int_{-\infty}^{\infty} g(x) p_X(x) \mathrm{d} x=\int_{300}^{500} g(x) \frac{1}{200} \mathrm{~d} x\\ & =\frac{1}{200}\left(\int_a^{500} 1.5 a \mathrm{~d} x+\int_{300}^a(2 x-0.5 a) \mathrm{d} x\right) \\ & =\frac{1}{200}\left(-a^2+900 a-300^2\right) . \end{aligned} E(Y)=g(x)pX(x)dx=300500g(x)2001 dx=2001(a5001.5a dx+300a(2x0.5a)dx)=2001(a2+900a3002).

所以当 a = 450 a=450 a=450 时可以获利最大。

随机变量函数的数学期望,随机变量函数的分布《知识点总结》的 § 2.2 \S 2.2 §2.2


t20

试证: 对任意的常数 c ≠ E ( X ) c \neq E(X) c=E(X), 有
Var ⁡ ( X ) = E ( X − E ( X ) ) 2 < E ( X − c ) 2 . \operatorname{Var}(X)=E(X-E(X))^2<E(X-c)^2 . Var(X)=E(XE(X))2<E(Xc)2.

解析

常用的技巧:加一项减一项
E ( X − E ( X ) ) 2 = E [ ( X − c ) − ( E ( X ) − c ) ] 2 = E ( X − c ) 2 − ( E ( X ) − c ) 2 , E(X-E(X))^2=E[(X-c)-(E(X)-c)]^2=E(X-c)^2-(E(X)-c)^2, E(XE(X))2=E[(Xc)(E(X)c)]2=E(Xc)2(E(X)c)2,

由于 c ≠ E ( X ) c \neq E(X) c=E(X), 所以 ( E ( X ) − c ) 2 > 0 (E(X)-c)^2>0 (E(X)c)2>0, 由此得
Var ⁡ ( X ) = E ( X − E ( X ) ) 2 < E ( X − c ) 2 . \operatorname{Var}(X)=E(X-E(X))^2<E(X-c)^2 . Var(X)=E(XE(X))2<E(Xc)2.


t21

已知某商场一天来的顾客数 X X X 服从参数为 λ \lambda λ 的泊松分布, 而每个来到商场的顾客购物的概率为 p p p,每个顾客是否购买商品间相互独立。证明: 此商场一天内购物的顾客数服从参数为 λ p \lambda p λp 的泊松分布.

解析

Y Y Y 表示商场一天内购物的顾客数, 则由全概率公式知, 对任意正整数 k k k
P ( Y = k ) = ∑ i = k ∞ P ( X = i ) P ( Y = k ∣ X = i ) = ∑ i = k ∞ λ i e − λ i ! ( i k ) p k ( 1 − p ) i − k = ( λ p ) k k ! e − λ ∑ i = k ∞ [ λ ( 1 − p ) ] i − k ( i − k ) ! = ( λ p ) k k ! e − λ e λ ( 1 − p ) = ( λ p ) k k ! e − λ p . \begin{aligned} P(Y=k) & =\sum_{i=k}^{\infty} P(X=i) P(Y=k \mid X=i)=\sum_{i=k}^{\infty} \frac{\lambda^i \mathrm{e}^{-\lambda}}{i!}\binom{i}{k} p^k(1-p)^{i-k} \\ & =\frac{(\lambda p)^k}{k!} \mathrm{e}^{-\lambda} \sum_{i=k}^{\infty} \frac{[\lambda(1-p)]^{i-k}}{(i-k)!} \\ &=\frac{(\lambda p)^k}{k!} \mathrm{e}^{-\lambda} \mathrm{e}^{\lambda(1-p)}\\ &=\frac{(\lambda p)^k}{k!} \mathrm{e}^{-\lambda p} . \end{aligned} P(Y=k)=i=kP(X=i)P(Y=kX=i)=i=ki!λieλ(ki)pk(1p)ik=k!(λp)keλi=k(ik)![λ(1p)]ik=k!(λp)keλeλ(1p)=k!(λp)keλp.
p s : ps: ps: 第一行到第二行的处理过程是因为要证明服从参数为 λ p \lambda p λp 的泊松分布,所以凑出来和这个分布对应的系数。

全概率公式、随机变量的独立性、常用离散分布 《知识点总结》的 § 1.4 、 1.5 、 2.4 \S 1.4、1.5、2.4 §1.41.52.4


t22

设一个人一年内患感冒的次数服从参数 λ = 5 \lambda=5 λ=5 的泊松分布. 现有某种预防感冒的药物对 75 % 75 \% 75% 的人有效 (能将泊松分布的参数减少为 λ = 3 \lambda=3 λ=3 ), 对另外的 25 % 25 \% 25% 的人不起作用. 如果某人服用了此药,一年内患了两次感冒, 那么该药对他 (她) 有效的可能性是多少?

解析

根据题干信息肯定需要通过条件概率来修正概率,关键是找到 P ( A ∣ B ) P(A \mid B) P(AB) 中的事件 A A A B B B

根据题干所求信息,容易得到 A A A 的含义为该药有效;而这个 B B B 即修正条件是“服药后一年感冒了两次”,所以:

记事件 B B B 为“服用此药后,一年感冒两次”, 事件 A A A 为“服用此药后有效”.
P ( A ∣ B ) = P ( B ) P ( A ∣ B ) P ( A ) P ( B ∣ A ) + P ( A ˉ ) P ( B ∣ A ˉ ) = 0.75 × 3 2 2 ! e − 3 0.75 × 3 2 2 ! e − 3 + 0.25 × 5 2 2 ! e − 5 = 0.889. P(A \mid B)=\dfrac{P(B)P(A\mid B)}{P(A)P(B\mid A)+P(\bar{A})P(B\mid \bar{A})}=\frac{0.75 \times \frac{3^2}{2!} \mathrm{e}^{-3}}{0.75 \times \frac{3^2}{2!} \mathrm{e}^{-3}+0.25 \times \frac{5^2}{2!} \mathrm{e}^{-5}}=0.889 . P(AB)=P(A)P(BA)+P(Aˉ)P(BAˉ)P(B)P(AB)=0.75×2!32e3+0.25×2!52e50.75×2!32e3=0.889.

贝叶斯公式、常用离散分布 《知识点总结》的 § 1.5 、 2.4 \S 1.5、2.4 §1.52.4


t23

设随机变量 X ∼ N ( 108 , 3 2 ) X \sim N\left(108,3^2\right) XN(108,32) ,求:
(1) P ( 102 ≤ X ≤ 117 ) P(102 \leq X \leq 117) P(102X117)
(2) 求 a a a ,使 P ( X < a ) ⩾ 0.95 P(X<a)\geqslant0.95 P(X<a)0.95.

解析

(1):
P ( 102 ⩽ X ⩽ 117 ) = P ( 102 − 108 3 ⩽ X − 108 3 ⩽ 117 − 108 3 ) = P ( − 2 ⩽ X − 108 3 ⩽ 3 ) = Φ ( 3 ) − Φ ( − 2 ) = Φ ( 3 ) − [ 1 − Φ ( 2 ) ] = 0.9987 − [ 1 − 0.9772 ] = 0.9795. \begin{aligned} P(102 \leqslant X \leqslant 117) & =P\left(\frac{102-108}{3} \leqslant \frac{X-108}{3} \leqslant \frac{117-108}{3}\right)=P\left(-2 \leqslant \frac{X-108}{3} \leqslant 3\right) \\ & =\Phi(3)-\Phi(-2)\\ &=\Phi(3)-[1-\Phi(2)]=0.9987- [1-0.9772]\\&=0.9795 . \\ \end{aligned} P(102X117)=P(31021083X1083117108)=P(23X1083)=Φ(3)Φ(2)=Φ(3)[1Φ(2)]=0.9987[10.9772]=0.9795.
(2):
P ( X < a ) = P ( X − 108 3 < a − 108 3 ) = Φ ( a − 108 3 ) ⩾ 0.95 Φ ( 1.645 ) ≈ 0.95 ⇒ a ⩾ 112.935 \begin{aligned} P(X<a) & =P\left(\frac{X-108}{3}<\frac{a-108}{3}\right)=\Phi\left(\frac{a-108}{3}\right)\geqslant0.95 \\ \Phi(1.645) & \approx 0.95 \\ \Rightarrow a &\geqslant 112.935 \end{aligned} P(X<a)Φ(1.645)a=P(3X108<3a108)=Φ(3a108)0.950.95112.935
正态分布的概率计算 《知识点总结》的 § 2.5 \S 2.5 §2.5


t24

某种圆盘的直径在区间 ( a , b ) (a, b) (a,b) 上服从均匀分布, 试求此种圆盘的平均面积.

解析

X X X 为圆盘的直径, 则圆盘的面积为 Y = π X 2 / 4 Y=\pi X^2 / 4 Y=πX2/4, 所以平均面积为
E ( Y ) = π 4 E ( X 2 ) = π 4 [ ( b − a ) 2 12 + ( a + b ) 2 4 ] = π 12 ( a 2 + b 2 + a b ) . E(Y)=\frac{\pi}{4} E\left(X^2\right)=\frac{\pi}{4}\left[\frac{(b-a)^2}{12}+\frac{(a+b)^2}{4}\right]=\frac{\pi}{12}\left(a^2+b^2+a b\right) . E(Y)=4πE(X2)=4π[12(ba)2+4(a+b)2]=12π(a2+b2+ab).

利用方差和期望的关系,通过背诵均匀分布的期望和方差快速得到答案。 《知识点总结》的 § 一定要背诵的常用概率分布数学期 \S 一定要背诵的常用概率分布数学期 §一定要背诵的常用概率分布数学期 望和方差 望和方差 望和方差


t25

设某种商品每周的需求量 X X X 服从区间 ( 10 , 30 ) (10,30) (10,30) 上均匀分布, 而商店进货数为区间 ( 10 , 30 ) (10,30) (10,30) 中的某一整数, 商店每销售 1 单位商品可获利 500 500 500 元; 若供大于求则降价处理, 每处理 1 单位商品亏损 100 100 100 元; 若供不应求, 则可从外部调剂供应, 此时每 1 单位商品仅获利 300 300 300 元. 为使商店所获利润期望值不少于 9280 9280 9280 元, 试确定最少进货量.

解析

设进货量为 a a a, 则利润为
g ( X ) = { 500 X − 100 ( a − X ) , 10 ⩽ X ⩽ a , 500 a + 300 ( X − a ) , a < X ⩽ 30 = { 600 X − 100 a , 10 ⩽ X ⩽ a , 300 X + 200 a , a < X ⩽ 30. \begin{aligned} g(X) & =\left\{\begin{array}{l} 500 X-100(a-X), \quad 10 \leqslant X \leqslant a, \\ 500 a+300(X-a), \quad a<X \leqslant 30 \end{array}\right. \\ & = \begin{cases}600 X-100 a, & 10 \leqslant X \leqslant a, \\ 300 X+200 a, & a<X \leqslant 30 .\end{cases} \end{aligned} g(X)={500X100(aX),10Xa,500a+300(Xa),a<X30={600X100a,300X+200a,10Xa,a<X30.

所以平均利润为
E ( g ( X ) ) = ∫ 10 30 g ( x ) 1 20   d x = 1 20 ∫ 10 a ( 600 x − 100 a ) d x + 1 20 ∫ a 30 ( 300 x + 200 a ) d x = − 7.5 a 2 + 350 a + 5250. \begin{aligned} E(g(X)) & =\int_{10}^{30} g(x) \frac{1}{20} \mathrm{~d} x=\frac{1}{20} \int_{10}^a(600 x-100 a) \mathrm{d} x+\frac{1}{20} \int_a^{30}(300 x+200 a) \mathrm{d} x \\ & =-7.5 a^2+350 a+5250 . \end{aligned} E(g(X))=1030g(x)201 dx=20110a(600x100a)dx+201a30(300x+200a)dx=7.5a2+350a+5250.

按照题意要求有
− 7.5 a 2 + 350 a + 5250 ⩾ 9280  即  − 7.5 a 2 + 350 a − 4030 ⩾ 0 , -7.5 a^2+350 a+5250 \geqslant 9280 \text { 即 }-7.5 a^2+350 a-4030 \geqslant 0, 7.5a2+350a+52509280  7.5a2+350a40300,

解得
20 2 3 ⩽ a ⩽ 26 , 20 \frac{2}{3} \leqslant a \leqslant 26, 2032a26,

因此最少进货为 21 单位.

t 19 t19 t19 的类似题。


t26

某种设备的使用寿命 X X X (以年计) 服从指数分布, 其平均寿命为 4 4 4 年.制造此种设备的厂家规定, 若设备在使用一年之内损坏, 则可以予以调换. 如果设备制造厂每售出一台设备可赢利 100 100 100 元,而调换一台设备制造厂需花费 300 300 300 元. 试求每台设备的平均利润.

解析

根据设备寿命 X X X 服从指数分布,其平均寿命为 4 4 4 年,这说的就是寿命期望 E ( X ) = 4 E(X)=4 E(X)=4 ,根据指数分布 E x p ( λ ) Exp(\lambda) Exp(λ) 数学期望为 1 λ \dfrac{1}{\lambda} λ1 得到使用寿命服从参数为 1 4 \dfrac{1}{4} 41 的指数分布。
p ( x ) = { 1 4 e − 1 4 x , x ⩾ 0 0 , x < 0 p(x)=\left\{\begin{array}{r} \dfrac{1}{4}e^{-\frac{1}{4}x},x\geqslant0 \\ 0,x<0 \end{array}\right. p(x)={41e41x,x00,x<0
所以一年内损坏的概率为
P ( X ⩽ 1 ) = ∫ 0 1 1 4 e − 1 4 x d x = 1 − e − 1 4 = 0.2212 P(X\leqslant1)=\int_0^1\dfrac{1}{4}e^{-\frac{1}{4}x}dx=1-e^{-\frac{1}{4}}=0.2212 P(X1)=0141e41xdx=1e41=0.2212
所以一台机器平均利润 Y Y Y 为:
E ( Y ) = 100 + P ( X ⩽ 1 ) ( − 300 ) = 33.64 E(Y)=100+P(X\leqslant1)(-300)=33.64 E(Y)=100+P(X1)(300)=33.64


t27

已知随机变量 X X X 的密度函数为
p ( x ) = 2 π ⋅ 1 e x + e − x , − ∞ < x < ∞ . p(x)=\frac{2}{\pi} \cdot \frac{1}{\mathrm{e}^x+\mathrm{e}^{-x}}, \quad-\infty<x<\infty . p(x)=π2ex+ex1,<x<∞.

试求随机变量 Y = g ( X ) Y=g(X) Y=g(X) 的概率分布, 其中
g ( x ) = { − 1 ,  当  x < 0 , 1 ,  当  x ⩾ 0. g(x)=\left\{\begin{aligned} -1, & \text { 当 } x<0, \\ 1, & \text { 当 } x \geqslant 0 . \end{aligned}\right. g(x)={1,1,  x<0,  x0.

解析

因为 p ( x ) p(x) p(x) 为偶函数, 所以可得 P ( X < 0 ) = P ( X ⩾ 0 ) = 0.5 P(X<0)=P(X \geqslant 0)=0.5 P(X<0)=P(X0)=0.5. 由此得
P ( Y = − 1 ) = P ( X < 0 ) = P ( X ⩾ 0 ) = P ( Y = 1 ) = 0.5. P(Y=-1)=P(X<0)=P(X \geqslant 0)=P(Y=1)=0.5 . P(Y=1)=P(X<0)=P(X0)=P(Y=1)=0.5.

所以 Y Y Y 的分布列为
Y − 1 1 P 0.5 0.5 \begin{array}{c|cc} \hline Y & -1 & 1 \\ \hline P & 0.5 & 0.5 \\ \hline \end{array} YP10.510.5


t28

设随机变量 X ∼ U ( 0 , 1 ) X \sim U(0,1) XU(0,1), 试求 1 − X 1-X 1X 的分布.

解析

X X X 的密度函数为
p X ( x ) = { 1 , 0 < x < 1 , 0 ,  其他.  p_X(x)= \begin{cases}1, & 0<x<1, \\ 0, & \text { 其他. }\end{cases} pX(x)={1,0,0<x<1, 其他

因为 y = g ( x ) = 1 − x y=g(x)=1-x y=g(x)=1x ( 0 , 1 ) (0,1) (0,1) 上为严格单调减函数, 其反函数为 x = h ( y ) = 1 − y x=h(y)=1-y x=h(y)=1y,且有 h ′ ( y ) = − 1 h^{\prime}(y)=-1 h(y)=1, 所以 Y = 1 − X Y=1-X Y=1X 的密度函数为
p Y ( y ) = { p X ( 1 − y ) ∣ − 1 ∣ , 0 < y < 1 , 0 ,  其他  = { 1 , 0 < y < 1 , 0 ,  其他.  p_Y(y)=\left\{\begin{array}{cl} p_X(1-y)|-1|, & 0<y<1, \\ 0, & \text { 其他 } \end{array}= \begin{cases}1, & 0<y<1, \\ 0, & \text { 其他. }\end{cases}\right. pY(y)={pX(1y)1∣,0,0<y<1, 其他 ={1,0,0<y<1, 其他

这表明: 当 X ∼ U ( 0 , 1 ) X \sim U(0,1) XU(0,1) 时, 1 − X 1-X 1X X X X 同分布.

采用公式法求解连续随机变量密度函数,《知识点总结》的 § 2.6 \S2.6 §2.6


t29

设随机变量 X \mathrm{X} X 服从指数分布, 其概率为 f ( x ) = { 2 e − 2 x , x > 0 , 0 ,  其他,  f(x)=\left\{\begin{array}{cl}2 e^{-2 x}, & x>0, \\ 0, & \text { 其他, }\end{array}\right. f(x)={2e2x,0,x>0, 其他

证明: Y = 1 − e − 2 X Y=1-e^{-2 X} Y=1e2X 在区间 ( 0 , 1 ) (0,1) (0,1) 上服从均匀分布.

解析

方法一:

由随机变量 X X X 的概率密度函数可推之
F X ( x ) = { 1 − e − 2 x , x ≥ 0 , 0 , x < 0 , F_X(x)=\left\{\begin{array}{cc} 1-e^{-2 x}, & x \geq 0, \\ 0, & x<0, \end{array}\right. FX(x)={1e2x,0,x0,x<0,
x > 0 x>0 x>0 时, 0 < 1 − e − 2 x < 1 0<1-e^{-2 x}<1 0<1e2x<1
综上 y ≤ 0 , F Y ( y ) = 0 ; y ≥ 1 , F Y ( y ) = 1 y \leq 0, F_Y(y)=0 ; y \geq 1, F_Y(y)=1 y0,FY(y)=0;y1,FY(y)=1
0 < y < 1 0<y<1 0<y<1 时, F Y ( y ) = P { Y ≤ y } = P { 1 − e − 2 X ≤ y } F_Y(y)=P\{Y \leq y\}=P\left\{1-e^{-2 X} \leq y\right\} FY(y)=P{Yy}=P{1e2Xy}
= P { X ≤ − 1 2 ln ⁡ ( 1 − y ) } = F X ( − 1 2 ln ⁡ ( 1 − y ) ) = y =P\left\{X \leq-\frac{1}{2} \ln (1-y)\right\}=F_X\left(-\frac{1}{2} \ln (1-y)\right)=y =P{X21ln(1y)}=FX(21ln(1y))=y

综上:
F Y ( y ) = { 0 , x < 0 , y , 0 ≤ x < 1 , 1 , x ≥ 1 , F_Y(y)=\left\{\begin{array}{lc} 0, & x<0, \\ y, & 0 \leq x<1, \\ 1, & x \geq 1, \end{array}\right. FY(y)= 0,y,1,x<0,0x<1,x1,

求导得:
f Y ( y ) = d d y F Y ( y ) = { 1 , 0 < x < 1 , 0 ,  其他.  f_Y(y)=\frac{\mathrm{d}}{\mathrm{d} y} F_Y(y)=\left\{\begin{array}{cc} 1, & 0<x<1, \\ 0, & \text { 其他. } \end{array}\right. fY(y)=dydFY(y)={1,0,0<x<1, 其他
方法二:

由于 X X X X ⩾ 0 X\geqslant0 X0 取值,所以 Y = 1 − e − 2 X Y=1-e^{-2X} Y=1e2X 的取值范围是 ( 0 , 1 ] (0,1] (0,1]

Y = 1 − e − 2 X Y=1-e^{-2 X} Y=1e2X 是严格单调递增的函数,其反函数为 h ( y ) = − 1 2 ln ⁡ ( 1 − y ) h(y)=-\dfrac{1}{2}\ln(1-y) h(y)=21ln(1y) ,对反函数求导: h ′ ( y ) = 1 2 ( 1 − y ) h^{\prime}(y)=\dfrac{1}{2(1-y)} h(y)=2(1y)1

直接带公式有
f Y ( y ) = { f X ( − 1 2 ln ⁡ ( 1 − y ) ) ∣ h ′ ( y ) ∣ , 0 < y < 1 , 0 ,  其他.  = { 1 , 0 < y < 1 , 0 ,  其他.  f_Y(y)=\left\{\begin{array}{cc} f_X(-\dfrac{1}{2}\ln(1-y))|h^\prime(y)|, & 0<y<1 , \\ 0, & \text { 其他. } \end{array}\right.=\left\{\begin{array}{cc} 1, & 0<y<1 , \\ 0, & \text { 其他. } \end{array}\right. fY(y)={fX(21ln(1y))h(y),0,0<y<1 其他={1,0,0<y<1 其他


t30

X ∼ N ( μ , σ 2 ) X \sim N\left(\mu, \sigma^2\right) XN(μ,σ2), 求 Y = e X Y=\mathrm{e}^X Y=eX 的概率密度函数 p Y ( y ) p_Y(y) pY(y).

解析

因为 Y = e X Y=\mathrm{e}^X Y=eX 的可能取值范围为 ( 0 , ∞ ) (0, \infty) (0,), 且 y = g ( x ) = e x y=g(x)=\mathrm{e}^x y=g(x)=ex 为严格单调增函数, 其反函数为 x = h ( y ) = ln ⁡ y x=h(y)=\ln y x=h(y)=lny, 及 h ′ ( y ) = 1 / y h^{\prime}(y)=1 / y h(y)=1/y, 所以 Y Y Y 的密度函数为
p Y ( y ) = { p X ( ln ⁡ y ) ∣ 1 y ∣ , y > 0 , 0 ,  其他  = { 1 2 π y σ exp ⁡ { − ( ln ⁡ y − μ ) 2 2 σ 2 } , y > 0 , 0 ,  其他.  p_Y(y)=\left\{\begin{array}{cc} p_X(\ln y)\left|\dfrac{1}{y}\right|, & y>0, \\ 0, & \text { 其他 } \end{array}= \begin{cases}\dfrac{1}{\sqrt{2 \pi} y \sigma} \exp \left\{-\dfrac{(\ln y-\mu)^2}{2 \sigma^2}\right\}, & y>0, \\ 0, & \text { 其他. }\end{cases}\right. pY(y)= pX(lny) y1 ,0,y>0, 其他 = 2π yσ1exp{2σ2(lnyμ)2},0,y>0, 其他


t31

(1) 设随机变量 X ∼ N ( 10 , 2 2 ) X \sim N\left(10,2^2\right) XN(10,22) ,求 Y = 3 X + 5 Y=3 X+5 Y=3X+5 的分布
(2) 设随机变量 X ∼ N ( 0 , 2 2 ) X \sim N\left(0,2^2\right) XN(0,22) ,求 Y = − X Y=-X Y=X 的分布

解析

(1): Y ∼ N ( 35 , 6 2 ) Y\sim N(35,6^2) YN(35,62)

(2): Y ∼ N ( 0 , 2 2 ) Y\sim N(0,2^2) YN(0,22)

p s : ps: ps: 设随机变量 X X X 服从正态分布 N ( μ , σ 2 ) N\left(\mu, \sigma^2\right) N(μ,σ2), 则当 a ≠ 0 a \neq 0 a=0 时, 有 Y = a X + b ∼ Y=a X+b \sim Y=aX+b N ( a μ + b , a 2 σ 2 ) N\left(a \mu+b, a^2 \sigma^2\right) N(aμ+b,a2σ2)


t32

X ∼ N ( 0 , σ 2 ) X \sim N\left(0, \sigma^2\right) XN(0,σ2), 求 Y = X 2 Y=X^2 Y=X2 的分布.

解析

因为 Y = X 2 Y=X^2 Y=X2 的可能取值区间为 ( 0 , ∞ ) (0, \infty) (0,), 所以当 y ⩽ 0 y \leqslant 0 y0 时, Y Y Y 的密度函数为 p Y ( y ) = 0 p_Y(y)=0 pY(y)=0.

而当 y > 0 y>0 y>0 时, Y Y Y 的分布函数为
F Y ( y ) = P Y ( Y ⩽ y ) = P X ( X 2 ≤ y ) = P X ( − y ≤ X ≤ y ) = 2 ∫ 0 y 1 2 π σ e − x 2 2 σ 2 d x = 2 2 π σ ∫ 0 y e − x 2 2 σ 2 d x p Y ( y ) = d d y F Y ( y ) = 2 2 π σ ⋅ 1 2 y ⋅ e − y 2 σ 2 = 1 2 π y σ exp ⁡ { − y 2 σ 2 } \begin{aligned} F_Y(y)&=P_Y(Y \leqslant y)=P_X\left(X^2 \leq y\right)=P_X(-\sqrt{y} \leq X \leq \sqrt{y}) \\ & =2 \int_0^{\sqrt{y}} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^2}{2 \sigma^2}} d x \\ & =\frac{2}{\sqrt{2 \pi} \sigma} \int_0^{\sqrt{y}} e^{-\frac{x^2}{2 \sigma^2}} d x \\ p_Y(y)&=\frac{d}{d y} F_Y(y)=\frac{2}{\sqrt{2 \pi} \sigma} \cdot \frac{1}{2 \sqrt{y}} \cdot e^{-\frac{y}{2 \sigma^2}} \\ & =\frac{1}{\sqrt{2 \pi y} \sigma} \exp \left\{-\frac{y}{2 \sigma^2}\right\} \\ & \end{aligned} FY(y)pY(y)=PY(Yy)=PX(X2y)=PX(y Xy )=20y 2π σ1e2σ2x2dx=2π σ20y e2σ2x2dx=dydFY(y)=2π σ22y 1e2σ2y=2πy σ1exp{2σ2y}
综上,
p Y ( y ) = { 1 2 π y σ exp ⁡ { − y 2 σ 2 } , y > 0 , 0 ,  其他.  p_Y(y)= \begin{cases}\dfrac{1}{\sqrt{2 \pi y} \sigma} \exp \left\{-\dfrac{y}{2 \sigma^2}\right\}, & y>0, \\ 0, & \text { 其他. }\end{cases} pY(y)= 2πy σ1exp{2σ2y},0,y>0, 其他


t33

设随机变量 X X X 的密度函数为
p X ( x ) = { 2 x π 2 , 0 < x < π , 0 ,  其他.  p_X(x)= \begin{cases}\dfrac{2 x}{\pi^2}, & 0<x<\pi, \\ 0, & \text { 其他. }\end{cases} pX(x)= π22x,0,0<x<π, 其他

Y = sin ⁡ X Y=\sin X Y=sinX 的密度函数 p Y ( y ) p_Y(y) pY(y).

解析

由于 X X X ( 0 , π ) (0,\pi) (0,π) 取值,所以 Y = sin ⁡ X Y=\sin X Y=sinX 的取值范围是 ( 0 , 1 ) (0,1) (0,1)

0 < Y < 1 0<Y<1 0<Y<1 时: F Y ( y ) = P Y ( Y ≤ y ) = P X ( sin ⁡ X ≤ y ) F_Y(y)=P_Y(Y \leq y)=P_X(\sin X \leq y) FY(y)=PY(Yy)=PX(sinXy) X X X 的积分区间如下:

积分区间示意

F Y ( y ) = P ( Y ⩽ y ) = P ( sin ⁡ X ⩽ y ) = P ( 0 ⩽ X ⩽ arcsin ⁡ y ) + P ( π − arcsin ⁡ y ⩽ X ⩽ π ) = ∫ 0 arcsin ⁡ y 2 x π 2 d x + ∫ π − arcsin ⁡ y 2 x π 2 d x P Y ( y ) = 2 arcsin ⁡ y π 2 ⋅ 1 1 − y 2 + 2 ( π − arcsin ⁡ y ) π 2 1 − y 2 = 2 π 1 − y 2 P Y ( y ) = { 2 π 1 − y 2 , 0 < y ⩽ 1 0 , ( 其他 ) \begin{aligned} F_Y(y) & =P(Y \leqslant y)=P(\sin X \leqslant y) \\ & =P(0 \leqslant X \leqslant \arcsin y)+P(\pi-\arcsin y \leqslant X \leqslant \pi) \\ & =\int_0^{\arcsin y} \frac{2 x}{\pi^2} d x+\int_{\pi-\arcsin y} \frac{2 x}{\pi^2} d x \\ P_Y(y) & =\frac{2 \arcsin y}{\pi^2} \cdot \frac{1}{\sqrt{1-y^2}}+\frac{2(\pi-\arcsin y)}{\pi^2 \sqrt{1-y^2}}=\frac{2}{\pi \sqrt{1-y^2}} \\ P_Y(y) & =\left\{\begin{array}{cl} \dfrac{2}{\pi \sqrt{1-y^2}}, & 0<y \leqslant 1 \\ 0, & \left.{(其他}\right) \end{array}\right. \end{aligned} FY(y)PY(y)PY(y)=P(Yy)=P(sinXy)=P(0Xarcsiny)+P(πarcsinyXπ)=0arcsinyπ22xdx+πarcsinyπ22xdx=π22arcsiny1y2 1+π21y2 2(πarcsiny)=π1y2 2= π1y2 2,0,0<y1(其他)

p s : ps: ps: 如果函数 f ( x ) f(x) f(x) 连续, ϕ ( x ) \phi(x) ϕ(x) φ ( x ) \varphi(x) φ(x) 可导,那么变限积分函数的求导公式可表示为
Φ ′ ( x ) = d d x ∫ ϕ ( x ) φ ( x ) f ( t ) d t = f [ φ ( x ) ] φ ′ ( x ) − f [ ϕ ( x ) ] ϕ ′ ( x ) \Phi^{\prime}(x)=\frac{d}{d x} \int_{\phi(x)}^{\varphi(x)} f(t) d t=f[\varphi(x)] \varphi^{\prime}(x)-f[\phi(x)] \phi^{\prime}(x) Φ(x)=dxdϕ(x)φ(x)f(t)dt=f[φ(x)]φ(x)f[ϕ(x)]ϕ(x)
当然,如果忘记这个公式,可以硬算出 F Y ( y ) F_Y(y) FY(y) 后再求导。


t34

设随机变量 X X X 的密度函数为
P X ( x ) = { 1 2 , − 1 < x < 0 1 4 , 0 ⩽ x < 2 0 ,  其他.  P_X(x)= \begin{cases}\dfrac{1}{2}, & -1<x<0 \\ \dfrac{1}{4}, & 0 \leqslant x<2 \\ 0, & \text { 其他. }\end{cases} PX(x)= 21,41,0,1<x<00x<2 其他

Y = X 2 Y=X^2 Y=X2 的密度函数 P Y ( y ) P_Y(y) PY(y) .

解析

从别处看到一个写的很清楚的解析,直接放在下面:

下面解析中的区间范围


t35

设随机变量 X ∼ U ( 0 , 4 ) X \sim U(0,4) XU(0,4) ,求 Y = X 2 − 2 X − 3 Y=X^2-2 X-3 Y=X22X3 的密度函数 P Y ( y ) P_Y(y) PY(y).

解析

X X X 的在 ( 0 , 4 ) (0,4) (0,4) 取值,则 Y = X 2 − 2 X − 3 = ( X − 1 ) 2 − 4 Y=X^2-2X-3=(X-1)^2-4 Y=X22X3=(X1)24 的取值范围是 [ − 4 , 5 ) [-4,5) [4,5)

所以当 − 4 ≤ Y < 5 -4\leq Y <5 4Y<5 时: F Y ( y ) = P Y ( Y ≤ y ) = P X ( ( X − 1 ) 2 ≤ y + 4 ) = P X ( 1 − y + 4 ≤ X ≤ 1 + y + 4 ) F_Y(y)=P_Y(Y\leq y)=P_X((X-1)^2\leq y+4)=P_X(1-\sqrt{y+4}\leq X\leq 1+\sqrt{y+4}) FY(y)=PY(Yy)=PX((X1)2y+4)=PX(1y+4 X1+y+4 )

此时要注意: 1 − y + 4 1-\sqrt{y+4} 1y+4 的取值范围是 ( − 2 , 1 ) (-2,1) (2,1) 所以要继续将 Y Y Y 的取值分成 ( − 4 , − 3 ) (-4,-3) (4,3) ( − 3 , 5 ) (-3,5) (3,5) 分成两段考虑:

− 4 < Y < − 3 -4<Y<-3 4<Y<3 时:
0 < − y + 4 + 1 < 1 , 1 < y + 4 + 1 < 2 F Y ( y ) = ∫ − y + 4 + 1 y + 4 + 1 1 4 d x ⇒ p Y ( y ) = 1 4 ( y + 4 ) − 1 2 \begin{aligned} & 0<-\sqrt{y+4}+1<1, \quad 1<\sqrt{y+4}+1<2 \\ & F_Y(y)=\int_{-\sqrt{y+4}+1}^{\sqrt{y+4}+1} \frac{1}{4} d x \Rightarrow p_Y(y)=\frac{1}{4} (y+4)^{-\frac{1}{2}} \end{aligned} 0<y+4 +1<1,1<y+4 +1<2FY(y)=y+4 +1y+4 +141dxpY(y)=41(y+4)21
− 3 < Y < 5 -3<Y<5 3<Y<5 时:
− y + 4 + 1 ⩽ 0 , 2 ⩽ y + 4 + 1 < 4 F Y ( y ) = ∫ 0 y + 4 + 1 1 4 d x ⇒ p Y ( y ) = 1 8 ( y + 4 ) − 1 2 \begin{aligned} &-\sqrt{y+4}+1 \leqslant 0,2 \leqslant \sqrt{y+4}+1<4 \\ & F_Y(y)=\int_0^{\sqrt{y+4}+1} \frac{1}{4} d x \Rightarrow p_Y(y)=\frac{1}{8} (y+4)^{-\frac{1}{2}} \end{aligned} y+4 +10,2y+4 +1<4FY(y)=0y+4 +141dxpY(y)=81(y+4)21
综上:
p Y ( y ) = { 1 4 ( y + 4 ) − 1 2 , − 4 ⩽ y < − 3 1 8 ( y + 4 ) − 1 2 , − 3 ⩽ y < 5 0 ,  其他  p_Y(y)=\left\{\begin{array}{cc} \dfrac{1}{4}(y+4)^{-\frac{1}{2}}, & -4\leqslant y<-3 \\ \dfrac{1}{8}(y+4)^{-\frac{1}{2}}, & -3 \leqslant y<5 \\ 0, & \text { 其他 } \end{array}\right. pY(y)= 41(y+4)21,81(y+4)21,0,4y<33y<5 其他 

t 17 、 t 27 − t 35 t17、t27-t35 t17t27t35 都是随机变量函数的分布问题,需要熟练掌握公式法和分布函数法,对应知识在《知识点总结》的 § 2.6 \S 2.6 §2.6

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值