概率论期末复习习题1

记录一下备考时的练习题目

t1

解析

A: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B)-P(A B) P(AB)=P(A)+P(B)P(AB) 由此推出 P ( A B ) = 0 P(AB)=0 P(AB)=0 无法推出目标条件,错误;

B:这是事件独立的充分必要条件,无法推出目标条件,错误;

C:事件有运算关系: A − B = A − A B = A B ˉ A-B=A-A B=A \bar{B} AB=AAB=ABˉ ,所以有:

P ( A B ˉ ) = P ( A − B ) = P ( A ) − P ( A B ) P(A\bar{B})=P(A-B)=P(A)-P(AB) P(ABˉ)=P(AB)=P(A)P(AB) P ( A ˉ B ) = P ( B − A ) = P ( B ) − P ( A B ) P(\bar{A}B)=P(B-A)=P(B)-P(AB) P(AˉB)=P(BA)=P(B)P(AB) P ( A B ˉ ) = P ( A ˉ B ) P(A\bar{B})=P(\bar{A}B) P(ABˉ)=P(AˉB)

由此推出 P ( A ) = P ( B ) P(A)=P(B) P(A)=P(B) ,正确;

D: P ( A ˉ B ˉ ) = P ( A ∪ B ‾ ) = 1 − P ( A ∪ B ) = 1 − P ( A ) − P ( B ) + P ( A B ) P(\bar{A} \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)=1-P(A)-P(B)+P(A B) P(AˉBˉ)=P(AB)=1P(AB)=1P(A)P(B)+P(AB)

由此推出 P ( A ) + P ( B ) = 1 P(A)+P(B)=1 P(A)+P(B)=1 ,无法推出目标条件,错误。

《知识点总结》的 § 1.1 、 1.3 \S1.1、1.3 §1.11.3

答案

C C C


t2

在这里插入图片描述

解析

(1): A B C ∪ A ˉ B ˉ C ˉ A B C \cup \bar{A} \bar{B} \bar{C} ABCAˉBˉCˉ

(2): A ˉ B ˉ C ˉ ∪ A B ˉ C ˉ ∪ A ˉ B C ˉ ∪ A ˉ B ˉ C \bar{A} \bar{B} \bar{C} \cup A\bar{B}\bar{C} \cup \bar{A} B \bar{C} \cup \bar{A} \bar{B} C AˉBˉCˉABˉCˉAˉBCˉAˉBˉC

(3):唯一不符合的情况是 A B C ABC ABC 同时发生,所以可以写为 Ω − A B C = A B C ‾ = A ˉ ∪ B ˉ ∪ C ˉ \Omega-ABC=\overline{ABC}=\bar{A} \cup \bar{B} \cup \bar{C} ΩABC=ABC=AˉBˉCˉ

(4): A B ∪ A C ∪ B C AB\cup AC \cup BC ABACBC

有运用德摩根律,《知识点总结》的 § 1.1 \S1.1 §1.1


t3

投掷3颗骰子,求以下事件的概率

(1)所得的最大点数小于等于5;

(2)所得的最大点数等于5。

解析

Y Y Y 为所得的最大点数,则

(1) P { Y ⩽ 5 } = 5 3 6 3 = 125 126 P\{Y\leqslant5\}=\dfrac{5^3}{6^3}=\dfrac{125}{126} P{Y5}=6353=126125

(2) P ( Y = 5 ) = P { Y ⩽ 5 } − P { Y ⩽ 4 } = 5 3 − 4 3 6 3 = 61 216 P(Y=5)=P\{Y\leqslant5\}-P\{Y\leqslant4\}=\dfrac{5^3-4^3}{6^3}=\dfrac{61}{216} P(Y=5)=P{Y5}P{Y4}=635343=21661


t4

n n n 个 “ 0 ” 与 n n n 个 “ 1 ” 随机地排列, 求没有两个 “ 1 ” 连在一起的概率.

解析

n n n 个 “ 1 1 1 ” 的放法: 2 n 2 n 2n 个位置上 “ 1 1 1 ” 占有 n n n 个位置, 所以共有 ( 2 n n ) \displaystyle \binom{2 n}{n} (n2n) 种放法,这是总的放法,即分母。

“没有两个 1 连在一起”, 相当于在 n n n 个 “ 0 0 0 ” 之间及两头 (共 n + 1 n+1 n+1 个位置)去放 1 1 1 ,所以有 ( n + 1 n ) \displaystyle \binom{n+1}{n} (nn+1) 种放法。

综上,答案为: p n = ( n + 1 n ) ( 2 n n ) = n + 1 ( 2 n n ) p_n=\dfrac{\displaystyle \binom{n+1}{n}}{\displaystyle\binom{2 n}{n}}=\dfrac{n+1}{\displaystyle\binom{2 n}{n}} pn=(n2n)(nn+1)=(n2n)n+1.

拓展

问:把 n n n 个完全相同的球随机地放到 N N N 个盒子中,有多少种情况?

答:用 N + 1 N+1 N+1 根火柴棒来表示 N N N 个盒子,因为球要放到盒子中间,所以最旁边的两根火柴棒的外面不可以放球,所以自由移动的球和火柴棒的位置为 n + N + 1 − 2 = N + n − 1 n+N+1-2=N+n-1 n+N+12=N+n1 个,挑出 n n n 个位置放球,最终答案为: ( N + n − 1 n ) \displaystyle \binom{N+n-1}{n} (nN+n1)

这个也称为排列组合里的重复组合。


t5

抽样模型:设 N N N 件产品中有 M M M 件是次品, N − M N-M NM 件是正品。现从 N N N 件中随机地不放回地抽取 n n n 件产品。求:

事件 A m = { A_m=\{ Am={ 所取的 n n n 件产品中恰有 m m m 件次品 } \} } 的概率. m = 0 , 1 , 2 , ⋯   , n m=0,1,2,\cdots,n m=0,1,2,,n

解析

P ( A m ) = ( N − M n − m ) ( M m ) ( N n ) P\left(A_m\right)=\dfrac{\displaystyle \binom{N-M}{n-m} \displaystyle \binom{M}{m}}{\displaystyle \binom{N}{n}} P(Am)=(nN)(nmNM)(mM)

拓展

现在为有放回地抽取,则新的概率为
P ( A m ) = ( n m ) ( M N ) m ( 1 − M N ) n − m P\left(A_m\right)=\displaystyle \binom{n}{m}\left(\dfrac{M}{N}\right)^m\left(1-\dfrac{M}{N}\right)^{n-m} P(Am)=(mn)(NM)m(1NM)nm


t6

盒子模型:设有 n n n 个(不同)球, 每个球等可能地落入 N N N 个不同的盒子中 ( n ≤ N ) (n \leq N) (nN),设每个盒子容球数不限, 求下列事件的概率:

(1) A = A= A= “指定的 n n n 个盒子中各有一球”;

(2) B = B= B= “恰有 n n n 个盒子中各有一球”.

解析

(1) P ( A ) = n ! N n P(A)=\dfrac{n!}{N^n} P(A)=Nnn!

(2) P ( B ) = C N n n ! N n = N ! n ! ( N − n ) ! n ! N n = N ! ( N − n ) ! N n P(B)=\dfrac{C_N^n n!}{N^n}=\dfrac{N!n!}{(N-n)!n!N^n}=\dfrac{N!}{(N-n)!N^n} P(B)=NnCNnn!=(Nn)!n!NnN!n!=(Nn)!NnN!


t7

抽签模型:袋中有 a a a 只白球, b b b 只红球, 它们除颜色不同外,其他方面没有差别,现在把球随机地一只只摸出来, 作

(1)放回取样;

(2)不放回取样;

求第 k k k 次摸出的球是白球的概率 ( k ≤ a + b ) (k \leq a+b) (ka+b)

解析

(1) p k = a a + b p_k=\dfrac{a}{a+b} pk=a+ba

(2)样本空间包含样本点的总数为: P a + b k P_{a+b}^k Pa+bk (排列)

​ 第 k k k 个球为白球事件的总数为: C a 1 P a + b − 1 k − 1 C_a^1P_{a+b-1}^{k-1} Ca1Pa+b1k1
⇒ P k = a × P a + b − 1 k − 1 P a + b k = a × ( a + b − 1 ) ⋯ ( a + b − k + 1 ) ( a + b ) ⋯ ( a + b − k + 1 ) = a a + b \Rightarrow P_k=\frac{a \times P_{a+b-1}^{k-1}}{P_{a+b}^k}=\frac{a \times(a+b-1) \cdots(a+b-k+1)}{(a+b) \cdots(a+b-k+1)}=\frac{a}{a+b} Pk=Pa+bka×Pa+b1k1=(a+b)(a+bk+1)a×(a+b1)(a+bk+1)=a+ba

t 5 − t 7 t5-t7 t5t7 均为古典概型,《知识点总结》的 § 1.2 \S1.2 §1.2


t8

甲乙两艘轮船驶向一个不能同时停泊两艘轮船的码头, 它们在一昼夜内到达的时间是等可能的. 如果甲船的停泊时间是 1 小时, 乙船的停泊时间是 2 小时, 求它们中任何一艘都不需要等候码头空出的概率是多少?

解析

在这里插入图片描述

如上图所示,记 x x x y y y 分别为甲乙两艘轮船到达码头的时间。

p = S A S Ω = 1 2 ( 2 3 2 + 2 2 2 ) 2 4 2 = 0.879 p=\dfrac{S_A}{S_\Omega}=\dfrac{\frac{1}{2}(23^2+22^2)}{24^2}=0.879 p=SΩSA=24221(232+222)=0.879

t 8 t8 t8 均为几何概型,《知识点总结》的 § 1.2 \S1.2 §1.2


t9

设随机事件 A , B A, B A,B 相互独立, A , C A, C A,C 相互独立, B C = ∅ B C=\varnothing BC= P ( A ) = P ( B ) = 1 2 , P ( A C ∣ A B ∪ C ) = 1 4 P(A)=P(B)=\frac{1}{2}, P(A C \mid A B \cup C)=\frac{1}{4} P(A)=P(B)=21,P(ACABC)=41

P ( C ) P(C) P(C)

解析

P ( A C ∣ A B ∪ C ) = P [ A C ∩ ( A B ∪ C ) ] P ( A B ∪ C ) = P ( A B C ∪ A C ) P ( A B ) + P ( C ) − P ( A B C ) = P ( A C ) P ( A B ) + P ( C ) − P ( A B C ) = P ( A ) P ( C ) P ( A ) P ( B ) + P ( C ) − 0 = 1 2 P ( C ) 1 2 1 2 + P ( C ) = 1 4 \begin{aligned} P(A C \mid A B \cup C) & =\frac{P[A C \cap(A B \cup C)]}{P(A B \cup C)}=\frac{P(A B C \cup A C)}{P(A B)+P(C)-P(A B C)} \\ & =\frac{P(A C)}{P(A B)+P(C)-P(A B C)}\\ & =\frac{P(A)P(C)}{P(A)P(B)+P(C)-0}\\ & =\dfrac{\frac{1}{2}P(C)}{\frac{1}{2}\frac{1}{2}+P(C)}\\ & =\frac{1}{4} \end{aligned} P(ACABC)=P(ABC)P[AC(ABC)]=P(AB)+P(C)P(ABC)P(ABCAC)=P(AB)+P(C)P(ABC)P(AC)=P(A)P(B)+P(C)0P(A)P(C)=2121+P(C)21P(C)=41

解得: P ( C ) = 1 4 P(C)=\dfrac{1}{4} P(C)=41

条件概率与事件独立性、还有事件之间的运算,《知识点总结》的 § 1.1 、 1.3 、 1.4 、 1.5 \S1.1、1.3、1.4、1.5 §1.11.31.41.5


t10

匹配问题:某人写好 n n n 封信,又写好 n n n 只信,然后在黑暗中把每封信放入一只信封中, 试求至少有一封信放对的概率。

解析

A k A_k Ak 表示第 k k k 封信放对了。
P = P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = ∑ P ( A i ) − ∑ P ( A i A j ) + ∑ ( A i A j A k ) + ⋯ + ( − 1 ) n − 1 ∑ ( A 1 A 2 ⋯ A n ) 其中 : P ( A i ) = ( n − 1 ) ! n ! = 1 n P ( A i A j ) = ( n − 2 ) ! n ! = 1 n ( n − 1 ) ⋯ P = ( n 1 ) 1 n − ( n 2 ) 1 n ( n − 1 ) + ( n 3 ) 1 n ( n − 1 ) ( n − 2 ) + ⋯ + ( − 1 ) n − 1 1 n ! = 1 − 1 2 ! + 1 3 ! − ⋯ + ( − 1 ) n − 1 1 n ! \begin{aligned} P&=P\left(A_1 \cup A_2 \cup \cdots \cup A_n\right)=\sum P\left(A_i\right)-\sum P\left(A_i A_j\right)+\sum\left(A_i A_j A_k\right)+\cdots+(-1)^{n-1} \sum\left(A_1 A_2 \cdots A_n\right) \\ &其中:\\ & P\left(A_i\right)=\frac{(n-1)!}{n!}=\frac{1}{n} \\ & P\left(A_i A_j\right)=\frac{(n-2)!}{n!}=\frac{1}{n(n-1)} \\ & \cdots \\ P&=\binom{n}{1} \frac{1}{n}-\binom{n}{2} \frac{1}{n(n-1)}+\binom{n}{3} \frac{1}{n(n-1)(n-2)}+\cdots+(-1)^{n-1} \frac{1}{n!} \\ & =1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n-1} \frac{1}{n!} \end{aligned} PP=P(A1A2An)=P(Ai)P(AiAj)+(AiAjAk)++(1)n1(A1A2An)其中:P(Ai)=n!(n1)!=n1P(AiAj)=n!(n2)!=n(n1)1=(1n)n1(2n)n(n1)1+(3n)n(n1)(n2)1++(1)n1n!1=12!1+3!1+(1)n1n!1


t11

已知 P ( A ˉ ) = 0.3 , P ( B ) = 0.4 , P ( A B ˉ ) = 0.5 P(\bar{A})=0.3, P(B)=0.4, P(A \bar{B})=0.5 P(Aˉ)=0.3,P(B)=0.4,P(ABˉ)=0.5, 求 P ( B ∣ A ∪ B ˉ ) P(B \mid A \cup \bar{B}) P(BABˉ).

解析

P ( B ∣ A ∪ B ˉ ) = P ( A B ) P ( A ∪ B ˉ ) , P ( A ∪ B ˉ ) = P ( A ) + P ( B ˉ ) − P ( A B ˉ ) = 0.7 + 0.6 − 0.5 = 0.8. P ( A B ˉ ) = P ( A ) − P ( A B ) , 可得  P ( A B ) = P ( A ) − P ( A B ˉ ) = 0.7 − 0.5 = 0.2 P ( B ∣ A ∪ B ˉ ) = P ( A B ) P ( A ∪ B ˉ ) = 0.2 0.8 = 0.25. \begin{aligned} &P(B \mid A \cup \bar{B})=\frac{P(A B)}{P(A \cup \bar{B})}, \\ &P(A \cup \bar{B})=P(A)+P(\bar{B})-P(A \bar{B})=0.7+0.6-0.5=0.8 . \\ &P(A\bar{B})=P(A)-P(A B) \text {, 可得 } P(A B)=P(A)-P(A \bar{B})=0.7-0.5=0.2\\ &P(B \mid A \cup \bar{B})=\frac{P(A B)}{P(A \cup \bar{B})}=\frac{0.2}{0.8}=0.25 . \end{aligned} P(BABˉ)=P(ABˉ)P(AB),P(ABˉ)=P(A)+P(Bˉ)P(ABˉ)=0.7+0.60.5=0.8.P(ABˉ)=P(A)P(AB)可得 P(AB)=P(A)P(ABˉ)=0.70.5=0.2P(BABˉ)=P(ABˉ)P(AB)=0.80.2=0.25.

条件概率与事件之间的运算,《知识点总结》的 § 1.1 、 1.3 、 1.4 \S1.1、1.3、1.4 §1.11.31.4


t12

m m m 个人相互传球, 球从甲手中传出, 每次传球时, 传球者等可能地把球传给其余 m − 1 m-1 m1 个人中的任何一个, 求第 n n n 次传球时仍由甲传出的概率。

解析

设 A i 为第i以次甲传出 ⇒ P ( A n ) = P ( A n − 1 ) P ( A n ∣ A n − 1 ) + P ( A ˉ n − 1 ) P ( A n ∣ A ˉ n − 1 ) ⇒ P ( A n ) = 1 m − 1 P ( A ˉ n − 1 ) ⇒ P ( A n ) = 1 m − 1 ( 1 − P ( A n − 1 ) ) 一阶线性递推数列 上述等式一定可以化成这样的形式: P ( A n ) − M = N [ P ( A n − 1 ) − M ] 对比系数: N = − 1 m − 1 , M = 1 m P ( A n ) − 1 m = 1 1 − m ( P ( A n − 1 ) − 1 m ) P ( A 1 ) = 1 令 P ( A n ) − 1 m = b n b n = 1 1 − m ⋅ b n − 1 = ( 1 1 − m ) 2 ⋅ b n − 2 = ⋯ = ( 1 1 − m ) n − 1 ⋅ b 1 = ( 1 1 − m ) n − 1 ⋅ ( 1 − 1 m ) = ( − 1 m − 1 ) n − 2 × − 1 m ⇒ P ( A n ) = b n + 1 m = 1 m [ 1 − ( − 1 m − 1 ) n − 2 ] , n = 2 , 3 , 4 , ⋯ \begin{aligned} &\text {设} A_i \text {为第i以次甲传出} \Rightarrow P\left(A_n\right)=P\left(A_{n-1}\right) P\left(A_n \mid A_{n-1}\right)+P\left(\bar{A}_{n-1}\right) P\left(A_n \mid \bar{A}_{n-1}\right)\\ &\Rightarrow P\left(A_n\right)=\frac{1}{m-1} P\left(\bar{A}_{n-1}\right) \\ &\Rightarrow P\left(A_n\right)=\frac{1}{m-1}\left(1-P\left(A_{n-1}\right)\right) \quad\text {一阶线性递推数列} \\ &\text{上述等式一定可以化成这样的形式:} P\left(A_n\right)-M=N\left[P\left(A_{n-1}\right)-M\right] \\ &\text {对比系数:} N=-\frac{1}{m-1}, M=\frac{1}{m} \\ &P\left(A_n\right)-\frac{1}{m}=\frac{1}{1-m}\left(P\left(A_{n-1}\right)-\frac{1}{m}\right) \quad P\left(A_1\right)=1 \\ &\text {令} P\left(A_n\right)-\frac{1}{m}=b_n \\ &\quad b_n=\frac{1}{1-m} \cdot b_{n-1}=\left(\frac{1}{1-m}\right)^2 \cdot b_{n-2}=\cdots=\left(\frac{1}{1-m}\right)^{n-1} \cdot b_1 \\ &\quad=\left(\frac{1}{1-m}\right)^{n-1} \cdot\left(1-\frac{1}{m}\right)=\left(\frac{-1}{m-1}\right)^{n-2} \times \frac{-1}{m} \\ &\Rightarrow P\left(A_n\right)=b_n+\frac{1}{m}=\frac{1}{m}\left[1-\left(\frac{-1}{m-1}\right)^{n-2}\right], n=2,3,4, \cdots \end{aligned} Ai为第i以次甲传出P(An)=P(An1)P(AnAn1)+P(Aˉn1)P(AnAˉn1)P(An)=m11P(Aˉn1)P(An)=m11(1P(An1))一阶线性递推数列上述等式一定可以化成这样的形式:P(An)M=N[P(An1)M]对比系数:N=m11,M=m1P(An)m1=1m1(P(An1)m1)P(A1)=1P(An)m1=bnbn=1m1bn1=(1m1)2bn2==(1m1)n1b1=(1m1)n1(1m1)=(m11)n2×m1P(An)=bn+m1=m1[1(m11)n2],n=2,3,4,

关键在于利用全概率公式划分事件。

线性递推数列求解通项公式可以参考 第零篇 数列递推 | StudyinCAU


t13

盒中装有8个乒乓球,其中有6个新的。第一次练习时,从中任取2个来用,用完后放回盒中。第二次练习时,再从盒中任取2个。求:

(1)第二次取出的球都是新球的概率;

(2)在第二次取出的球都是新球的条件下,第一次取到的球都是新球的概率。

解析

(1)记 B B B 为第二次取出的球是2个新球。
P ( B ) = C 6 2 C 4 2 C 8 2 C 8 2 + C 6 1 C 2 1 C 5 2 C 8 2 C 8 2 + C 2 2 C 6 2 C 8 2 C 8 2 = 225 784 P(B)=\frac{C_6^2 C_4^2}{C_8^2 C_8^2}+\frac{C_6^1 C_2^1 C_5^2}{C_8^2 C_8^2}+\frac{C_2^2 C_6^2}{C_8^2 C_8^2}=\frac{225}{784} P(B)=C82C82C62C42+C82C82C61C21C52+C82C82C22C62=784225
(2)记 A A A 为第一次取出的球是2个新球。
P ( A ∣ B ) = P ( A B ) P ( B ) = C 6 2 C 4 2 C 8 2 C 8 2 × 784 225 = 2 5 . P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{C_6^2 C_4^2}{C_8^2 C_8^2} \times \frac{784}{225}=\frac{2}{5} . P(AB)=P(B)P(AB)=C82C82C62C42×225784=52.

古典概型、条件概率,《知识点总结》的 § 1.2 、 1.4 \S1.2、1.4 §1.21.4


t14

某人从外地赶来参加会议, 他乘火车、轮船、汽车或飞机来的概率分别为 3 10 , 1 5 , 1 10 , 2 5 \dfrac{3}{10}, \dfrac{1}{5}, \dfrac{1}{10}, \dfrac{2}{5} 103,51,101,52 如果他乘飞机来, 则不会迟到, 乘火车、轮船或汽车迟到的概率分别为 1 4 , 1 3 , 1 12 \dfrac{1}{4}, \dfrac{1}{3}, \dfrac{1}{12} 41,31,121, 试问:

(1)他迟到的概率;

(2)此人迟到, 试推断他乘火车来的概率有多大。

解析

(1)记 A A A 为迟到;记 B 1 B_1 B1 为乘火车, B 2 B_2 B2 为乘轮船, B 3 B_3 B3 为乘汽车, B 4 B_4 B4 为乘飞机。
P ( A ) = ∑ i = 1 4 P ( B i ) P ( A ∣ B i ) = 3 20 P(A)=\sum_{i=1}^4 P\left(B_i\right) P\left(A \mid B_i\right)=\frac{3}{20} P(A)=i=14P(Bi)P(ABi)=203
(2) P ( B 1 ∣ A ) = P ( A ∣ B 1 ) P ( B 1 ) P ( A ) = 1 2 P\left(B_1 \mid A\right)=\dfrac{P\left(A \mid B_1\right) P\left(B_1\right)}{P(A)}=\dfrac{1}{2} P(B1A)=P(A)P(AB1)P(B1)=21
1}{12}$, 试问:

(1)他迟到的概率;

(2)此人迟到, 试推断他乘火车来的概率有多大。

解析

(1)记 A A A 为迟到;记 B 1 B_1 B1 为乘火车, B 2 B_2 B2 为乘轮船, B 3 B_3 B3 为乘汽车, B 4 B_4 B4 为乘飞机。
P ( A ) = ∑ i = 1 4 P ( B i ) P ( A ∣ B i ) = 3 20 P(A)=\sum_{i=1}^4 P\left(B_i\right) P\left(A \mid B_i\right)=\frac{3}{20} P(A)=i=14P(Bi)P(ABi)=203
(2) P ( B 1 ∣ A ) = P ( A ∣ B 1 ) P ( B 1 ) P ( A ) = 1 2 P\left(B_1 \mid A\right)=\dfrac{P\left(A \mid B_1\right) P\left(B_1\right)}{P(A)}=\dfrac{1}{2} P(B1A)=P(A)P(AB1)P(B1)=21

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值