记录一下备考时的练习题目
t1
解析
A: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B)-P(A B) P(A∪B)=P(A)+P(B)−P(AB) 由此推出 P ( A B ) = 0 P(AB)=0 P(AB)=0 无法推出目标条件,错误;
B:这是事件独立的充分必要条件,无法推出目标条件,错误;
C:事件有运算关系: A − B = A − A B = A B ˉ A-B=A-A B=A \bar{B} A−B=A−AB=ABˉ ,所以有:
P ( A B ˉ ) = P ( A − B ) = P ( A ) − P ( A B ) P(A\bar{B})=P(A-B)=P(A)-P(AB) P(ABˉ)=P(A−B)=P(A)−P(AB) , P ( A ˉ B ) = P ( B − A ) = P ( B ) − P ( A B ) P(\bar{A}B)=P(B-A)=P(B)-P(AB) P(AˉB)=P(B−A)=P(B)−P(AB) 又 P ( A B ˉ ) = P ( A ˉ B ) P(A\bar{B})=P(\bar{A}B) P(ABˉ)=P(AˉB)
由此推出 P ( A ) = P ( B ) P(A)=P(B) P(A)=P(B) ,正确;
D: P ( A ˉ B ˉ ) = P ( A ∪ B ‾ ) = 1 − P ( A ∪ B ) = 1 − P ( A ) − P ( B ) + P ( A B ) P(\bar{A} \bar{B})=P(\overline{A \cup B})=1-P(A \cup B)=1-P(A)-P(B)+P(A B) P(AˉBˉ)=P(A∪B)=1−P(A∪B)=1−P(A)−P(B)+P(AB)
由此推出 P ( A ) + P ( B ) = 1 P(A)+P(B)=1 P(A)+P(B)=1 ,无法推出目标条件,错误。
《知识点总结》的 § 1.1 、 1.3 \S1.1、1.3 §1.1、1.3
答案
C C C
t2
解析
(1): A B C ∪ A ˉ B ˉ C ˉ A B C \cup \bar{A} \bar{B} \bar{C} ABC∪AˉBˉCˉ
(2): A ˉ B ˉ C ˉ ∪ A B ˉ C ˉ ∪ A ˉ B C ˉ ∪ A ˉ B ˉ C \bar{A} \bar{B} \bar{C} \cup A\bar{B}\bar{C} \cup \bar{A} B \bar{C} \cup \bar{A} \bar{B} C AˉBˉCˉ∪ABˉCˉ∪AˉBCˉ∪AˉBˉC
(3):唯一不符合的情况是 A B C ABC ABC 同时发生,所以可以写为 Ω − A B C = A B C ‾ = A ˉ ∪ B ˉ ∪ C ˉ \Omega-ABC=\overline{ABC}=\bar{A} \cup \bar{B} \cup \bar{C} Ω−ABC=ABC=Aˉ∪Bˉ∪Cˉ
(4): A B ∪ A C ∪ B C AB\cup AC \cup BC AB∪AC∪BC
有运用德摩根律,《知识点总结》的 § 1.1 \S1.1 §1.1
t3
投掷3颗骰子,求以下事件的概率
(1)所得的最大点数小于等于5;
(2)所得的最大点数等于5。
解析
记 Y Y Y 为所得的最大点数,则
(1) P { Y ⩽ 5 } = 5 3 6 3 = 125 126 P\{Y\leqslant5\}=\dfrac{5^3}{6^3}=\dfrac{125}{126} P{ Y⩽5}=6353=126125
(2) P ( Y = 5 ) = P { Y ⩽ 5 } − P { Y ⩽ 4 } = 5 3 − 4 3 6 3 = 61 216 P(Y=5)=P\{Y\leqslant5\}-P\{Y\leqslant4\}=\dfrac{5^3-4^3}{6^3}=\dfrac{61}{216} P(Y=5)=P{ Y⩽5}−P{ Y⩽4}=6353−43=21661
t4
把 n n n 个 “ 0 ” 与 n n n 个 “ 1 ” 随机地排列, 求没有两个 “ 1 ” 连在一起的概率.
解析
n n n 个 “ 1 1 1 ” 的放法: 2 n 2 n 2n 个位置上 “ 1 1 1 ” 占有 n n n 个位置, 所以共有 ( 2 n n ) \displaystyle \binom{2 n}{n} (n2n) 种放法,这是总的放法,即分母。
“没有两个 1 连在一起”, 相当于在 n n n 个 “ 0 0 0 ” 之间及两头 (共 n + 1 n+1 n+1 个位置)去放 1 1 1 ,所以有 ( n + 1 n ) \displaystyle \binom{n+1}{n} (nn+1) 种放法。
综上,答案为: p n = ( n + 1 n ) ( 2 n n ) = n + 1 ( 2 n n ) p_n=\dfrac{\displaystyle \binom{n+1}{n}}{\displaystyle\binom{2 n}{n}}=\dfrac{n+1}{\displaystyle\binom{2 n}{n}} pn=(n2n)(nn+1)=(n2n)n+1.
拓展
问:把 n n n 个完全相同的球随机地放到 N N N 个盒子中,有多少种情况?
答:用 N + 1 N+1 N+1 根火柴棒来表示 N N N 个盒子,因为球要放到盒子中间,所以最旁边的两根火柴棒的外面不可以放球,所以自由移动的球和火柴棒的位置为 n + N + 1 − 2 = N + n − 1 n+N+1-2=N+n-1 n+N+1−2=N+n−1 个,挑出 n n n 个位置放球,最终答案为: ( N + n − 1 n ) \displaystyle \binom{N+n-1}{n} (nN+n−1)
这个也称为排列组合里的重复组合。
t5
抽样模型:设 N N N 件产品中有 M M M 件是次品, N − M N-M N−M 件是正品。现从 N N N 件中随机地不放回地抽取 n n n 件产品。求:
事件 A m = { A_m=\{ Am={ 所取的 n n n 件产品中恰有 m m m 件次品 } \} } 的概率. m = 0 , 1 , 2 , ⋯ , n m=0,1,2,\cdots,n m=0,1