1、探索Azure数据服务,构建高效分析平台

探索Azure数据服务,构建高效分析平台

1. 核心人物介绍

在Azure数据服务领域,有几位核心人物值得我们了解:
- Patrik Borosch :作为微软瑞士公司的数据与人工智能云解决方案架构师,他拥有超过25年的商业智能和分析开发、工程及架构经验,是微软认证的数据工程师和人工智能工程师。他参与了众多重要的国际数据仓库、数据集成和大数据项目,在需求工程、数据建模、ETL到报告和仪表板等各个方面都积累了丰富的经验,目前在微软瑞士支持客户进入Azure云的分析世界。
- Pradeep Menon :一位经验丰富的数据分析师,拥有超过18年的数据和人工智能经验。他目前在微软担任数据和人工智能策略师,负责帮助亚洲的战略客户通过使用云、大数据和人工智能技术实现更数据驱动的决策。他还是一位杰出的演讲者和博主,就云技术、数据和人工智能发表了众多主题演讲。
- Liviana Zürcher :她的职业生涯始于罗马尼亚,曾在甲骨文担任商业智能和数据仓库技术销售顾问。之后,她担任大数据仓库和商业智能顾问及培训师多年,项目遍布全球。自2018年起,她加入微软瑞士团队,担任数据和人工智能云解决方案架构师。
- Meinrad Weiss :在微软瑞士的数据与人工智能团队担任高级云解决方案架构师,是一位经验丰富的数据库专家,在数据、商业智能和分析项目方面有着长期且成功的记录。他的专业知识涵盖从本地和云端的关系型数据库管理系统到使用Azure数据服务的最复杂分析架构以及微软的物联网领域。

2. 数据仓库与数据湖的对比
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值