模拟滤波器到数字滤波器的映射方法
将已经设计好的模拟滤波器,通过一组映射关系变换为数字滤波器.对于这样一个映射来说,必须确保
- 映射前后频率对应
- 因果稳定的系统在映射后仍为因果稳定系统
以下是具体方法:
冲激响应不变法
从时域角度出发,使滤波器得单位冲激响应逼近模拟滤波器的单位冲激响应.为了实现这一目的,我们可以对模拟滤波器的冲激响应 h ( t ) h(t) h(t)进行采样,得到的离散序列即为滤波器的单位冲激响应.
h ( n T ) = h a ( t ) ∣ t = n T h(nT)=h_a(t)|_{t=nT} h(nT)=ha(t)∣t=nT
系统函数
根据时域推出s域的变换过程,设模拟滤波器的系统函数有N个一阶极点 s i s_i si,那么其系统函数就可写为
H a ( s ) = ∑ k = 1 N A k s − s k H_a(s)=\sum_{k=1}^N \frac{A_k}{s-s_k} Ha(s)=k=1∑Ns−skAk
变换到时域后,抽样所得离散序列为
h ( n ) = h a ( n T ) = ∑ k = 1 N A k e s k n T u ( n ) h(n)=h_a(nT)=\sum_{k=1}^N A_ke^{s_knT}u(n) h(n)=ha(nT)=k=1∑NAkesknTu(n)
等式取z变换求得原模拟滤波器所映射的数字滤波的系统函数
H ( z ) = ∑ k = 1 N A k 1 − e s k T z − 1 H(z)=\sum_{k=1}^N \frac{A_k}{1-e^{s_kT}z^{-1}} H(z)=k=1∑N1−eskTz−1Ak
这样看似完成了模拟滤波器的映射,但实际上我们需要注意到一点,或者说我们在设计的时候没有考虑到一点:抽样是否等价.这既是冲激响应不变法的核心,也是所来诸多问题的元凶.
借助于抽样信号频谱与原信号频谱之间关系
H ( e j ω ) = 1 T ∑ k = − ∞ ∞ H a ( j ω − 2 k π T ) H(e^{j\omega})=\frac 1T \sum_{k=-\infty}^\infty H_a(j\frac{\omega-2k\pi}{T}) H(ejω)=T1k=−∞∑∞Ha(jTω−2kπ)
可以看出,抽样信号实际是原信号频谱的周期延拓且加权,所以在实际设计中,令 h ( n ) = T h a ( n T ) h(n)=T h_a(nT) h(n)=Tha(nT