2024.8.16


130124202408161001


DATE #:20240816

ITEM #:DOC

WEEK #:FRIDAY

DAIL #:捌月拾叁

TAGS
    < BGM = ["Autism--闫东炜"](https://music.163.com/song?id=1321871852&userid=8847964125) >
    < theme = oi-math linear math >
    < [空] >
    < [空] > 
    < [空] >
    
> ``` >今天不想做,所以才要做 -- 春上村树 > ```

向量小结

向量

向量:加法,数乘
A : ( x 1 , y 1 ) , B : ( x 2 , y 2 ) A B ⃗ = ( x 1 − x 1 , y 2 − y 1 ) a ⃗ = ( x a y a ) , b ⃗ = ( x b y b ) 数乘: k a ⃗ = ( k x a , k y a ) 加法: a ⃗ + b ⃗ ( x 1 + x 2 , y 1 , y 2 ) A:(x_1,y_1),B:(x_2,y_2)\\ \vec{AB} = (x_1-x_1,y_2-y_1)\\ \vec{a} = \begin{pmatrix} x_a\\y_a \end{pmatrix},\vec{b} = \begin{pmatrix}x_b\\y_b\end{pmatrix} \\ 数乘:k \vec{a} = (kx_a,ky_a)\\ 加法:\vec{a}+\vec{b}(x_1+x_2,y_1,y_2)\\ A:(x1,y1),B:(x2,y2)AB =(x1x1,y2y1)a =(xaya),b =(xbyb)数乘:ka =(kxa,kya)加法:a +b (x1+x2,y1,y2)

向量值: ( a ⃗ , b ⃗ , c ⃗ ) (\vec{a},\vec{b},\vec{c}) (a ,b ,c )
加;数乘:线性运算
设 a 1 ⃗ . . . . a n ⃗ ‾ 称 ∑ i = 1 n k i a i ⃗ 为线性组合 若 b ⃗ = ∑ i = 1 n k i a i ⃗ , 则 b ⃗ 可由这个集合表示出 ∃ i ∈ { 1 , . . . . , n } , a i 可被 a j ( j ≠ i ) 线性表出 \underline{设\vec{a_1}....\vec{a_n}} \\ 称\sum_{i=1}^{n}k_i\vec{a_i}为线性组合 \\ 若\vec{b}=\sum_{i=1}^{n}k_i\vec{a_i}, \\ 则\vec{b}可由这个集合表示出 \\ \exists i \in \{1,....,n\},a_i可被a_j(j\ne i)线性表出 a1 ....an i=1nkiai 为线性组合b =i=1nkiai ,b 可由这个集合表示出i{1,....,n},ai可被aj(j=i)线性表出
线性相关 ⟺ ∃ k i , ∑ i = 1 n k i a i ⃗ = 0 ⃗ , 存在 k i ≠ 0 线性无关 ⟺ ∑ i = 1 n k i a i ⃗ , 任意 k i = 0 线性相关 \Longleftrightarrow \exists k_i ,\sum_{i=1}^{n}k_i\vec{a_i} = \vec{0},存在k_i \ne 0 \\ 线性无关 \Longleftrightarrow \sum_{i=1}^{n}k_i\vec{a_i},任意k_i = 0 \\ 线性相关ki,i=1nkiai =0 ,存在ki=0线性无关i=1nkiai ,任意ki=0
a 1 ⃗ , a 2 ⃗ 线性相关 ⟺ a 1 ⃗ / / a 2 ⃗ 包含 0 ⃗ ⇒ 线性相关 \vec{a_1},\vec{a_2}线性相关 \Longleftrightarrow \vec{a_1} // \vec{a_2} \\ 包含\vec{0} \Rightarrow 线性相关 \\ a1 ,a2 线性相关a1 //a2 包含0 线性相关
平面向量基本定理:
a 1 ⃗ , a 2 ⃗ , a 3 ⃗ 一定线性相关 \vec{a_1},\vec{a_2},\vec{a_3}一定线性相关 a1 ,a2 ,a3 一定线性相关
正交化,单位化


设 ( a 1 ⃗ . . . . a n ⃗ ) 设 ( a b 1 ⃗ . . . . a b k ⃗ ) 极大且线性无关联 设(\vec{a_1}....\vec{a_n}) \\ 设(\vec{a_{b_1}}....\vec{a_{bk}})极大且线性无关联 \\ (a1 ....an )(ab1 ....abk )极大且线性无关联

命题1:

b ⃗ 可由 a 1 ⃗ . . . . a n ⃗ 线性表出 标出方式唯一 ⟺ a 1 ⃗ . . . . a n ⃗ 线性无关 \vec{b}可由\vec{a_1}....\vec{a_n}线性表出 \\ 标出方式唯一\Longleftrightarrow \vec{a_1}....\vec{a_n}线性无关 \\ b 可由a1 ....an 线性表出标出方式唯一a1 ....an 线性无关

b ⃗ = ∑ i = 1 n k i a i ⃗ = ∑ i = 1 n t i a i ⃗ ⇒ ∑ i = 1 n ( k i − t i ) a i ⃗ = 0 ⃗ ∑ i = 1 n k i a i ⃗ = 0 ⃗ \vec{b} = \sum_{i=1}^{n}k_i\vec{a_i} = \sum_{i=1}^{n}t_i\vec{a_i} \\ \Rightarrow \sum_{i=1}^{n}(k_i-t_i)\vec{a_i} = \vec{0} \\ \sum_{i=1}^{n}k_i\vec{a_i}=\vec{0} b =i=1nkiai =i=1ntiai i=1n(kiti)ai =0 i=1nkiai =0

命题2:

a 1 ⃗ , . . . . . . , a n ⃗ 线性无关, a 1 ⃗ , . . . . . , a n ⃗ , b ⃗ 线性相关 ⟺ b ⃗ 可由 a 1 ⃗ , . . . , a n ⃗ 线性表出 \vec{a_1},......,\vec{a_n}线性无关,\vec{a_1},.....,\vec{a_n},\vec{b}线性相关 \\ \Longleftrightarrow \vec{b}可由\vec{a_1},...,\vec{a_n}线性表出 a1 ,......,an 线性无关,a1 ,.....,an ,b 线性相关b 可由a1 ,...,an 线性表出

∑ k a ⃗ + k n + 1 b ⃗ = 0 k n + 1 ≠ 0 → b ⃗ = ‾ k n + 1 = 0 ⇒ 矛盾 \sum k \vec{a}+k_{n+1}\vec{b} = 0 \\ k_{n+1} \ne 0 \to \vec{b} = \underline{} \\ k_{n+1}= 0\Rightarrow 矛盾 ka +kn+1b =0kn+1=0b =kn+1=0矛盾

命题2.5:

( a 1 ⃗ , . . . , a n ⃗ ) 的极大无关 ( a k 1 ⃗ , . . . , a k t ⃗ ) 可唯一表出 a i ⃗ , i = 1 , 2 , . . . , n (\vec{a_1},...,\vec{a_n})的极大无关(\vec{a_{k_1}},...,\vec{a_{k_t}}) \\ 可唯一表出\vec{a_i},i=1,2,...,n \\ (a1 ,...,an )的极大无关(ak1 ,...,akt )可唯一表出ai ,i=1,2,...,n

命题3:

a 1 ⃗ , . . . . , a n ⃗ 可表出 b 1 ⃗ , . . . . , b m ⃗ , 后者线性无关 则 n ≥ m \vec{a_1},....,\vec{a_n}可表出\vec{b_1},....,\vec{b_m},后者线性无关 \\ 则n\ge m a1 ,....,an 可表出b1 ,....,bm ,后者线性无关nm

对n归纳,n=1,显然。下证n时命题成立

a 1 ⃗ , . . . , a n ⃗ \vec{a_1},...,\vec{a_n} a1 ,...,an 表出, b 1 ⃗ , . . . , b n ⃗ , b n + 1 ⃗ , b n + 2 ⃗ \vec{b_1},...,\vec{b_n},\vec{b_{n+1}},\vec{b_{n+2}} b1 ,...,bn ,bn+1 ,bn+2 线性表出

$\Longleftrightarrow \underline{\vec{b_1},…\vec{b_n},\vec{b_{n+1}}-X \vec{a_{n+1}}} $ 线性相关

$\Longleftrightarrow \underline{} $ 线性无关,不成立

  1. n+1个向量
  2. 都可由 a 1 ⃗ , . . . , a n ⃗ \vec{a_1},...,\vec{a_n} a1 ,...,an 表出
  3. 若线性相关

b n + 2 ⃗ = ∑ i + 1 n k i a n + 1 ⃗ , b n + 2 ⃗ − X a n + 1 ⃗ 可由, b 1 ⃗ , . . . , b n ⃗ 表出 a n + 1 ⃗ = 1 x ( b n + 1 ⃗ − ∑ i + 1 n k i a i ⃗ ) b n + 2 ⃗ = b n + 2 ⃗ − X a n + 1 ⃗ + X a n + 1 ⃗ \vec{b_{n+2}} = \sum_{i+1}^{n}k_i\vec{a_{n+1}},\vec{b_{n+2}}-X\vec{a_{n+1}}可由, \\ \vec{b_1},...,\vec{b_n}表出 \\ \vec{a_{n+1}} = \frac{1}{x}(\vec{b_{n+1}}-\sum_{i+1}^{n}k_i\vec{a_i}) \\ \vec{b_{n+2}} = \vec{b_{n+2}}-X\vec{a_{n+1}}+X\vec{a_{n+1}} bn+2 =i+1nkian+1 ,bn+2 Xan+1 可由,b1 ,...,bn 表出an+1 =x1(bn+1 i+1nkiai )bn+2 =bn+2 Xan+1 +Xan+1

命题4:

( a 1 ⃗ , . . . , a n ⃗ ) 任意两个极大值线性无关组大小相等 (\vec{a_1},...,\vec{a_n})任意两个极大值线性无关组大小相等 (a1 ,...,an )任意两个极大值线性无关组大小相等

向量组的极大线性无关组大小相同

秩: a 1 ⃗ , . . . , a n ⃗ \vec{a_1},...,\vec{a_n} a1 ,...,an 的极大值线性无关组大小定义为秩,rank( a 1 ⃗ , . . . , a n ⃗ \vec{a_1},...,\vec{a_n} a1 ,...,an )

a ⃗ = ( x a , y a , z a ) \vec{a} = (x_a,y_a,z_a) a =(xa,ya,za)

a ⃗ \vec{a} a 线性相关 ⟺ a 1 ⃗ = 0 \Longleftrightarrow \vec{a_1} = 0 a1 =0

a 1 ⃗ , a 2 ⃗ \vec{a_1},\vec{a_2} a1 ,a2 线性相关 ⟺ \Longleftrightarrow 共线

a 1 ⃗ , a 2 ⃗ , a 3 ⃗ \vec{a_1},\vec{a_2},\vec{a_3} a1 ,a2 ,a3 线性相关 ⟺ \Longleftrightarrow 共面

感:n个向量线性相关, ⟺ \Longleftrightarrow n-1维空间内 ⟺ \Longleftrightarrow n维体积为0


行列式:

∣ A ∣ : = ∑ ( − 1 ) τ ( j 1 , j 2 , . . . , j n ) a 1 , j 1 , a 2 , j 2 . . . . a n , j n ( d e t A ) j 1 j 2 . . . j n |A|:=\sum(-1)^{\tau(j_1,j_2,...,j_n)}a_{1,j_1},a_{2,j_2}....a_{n,j_n} \\ (det A)j_1j_2...j_n A:=(1)τ(j1,j2,...,jn)a1,j1,a2,j2....an,jn(detA)j1j2...jn

( a 1 , a 2 , a 3 , . . . . , a n ) A = ( a 11   a 12 . . . a 1 n a 21   a 22 . . . a 2 n . . . a n 1   a n 2 . . . a n m ) n × m 矩阵 n × m ∣ a   b c   d ∣ = a d − b c ∣ 1   2   3 4   5   6 1   2   3 ∣ = 15 − 12 − 24 + 12 + 24 − 15 = 0 (a_1,a_2,a_3,....,a_n) \\ A= \begin{pmatrix} a_{11}\ a_{12}... a_{1n}\\ a_{21}\ a_{22}... a_{2n}\\ ... \\ a_{n1}\ a_{n2}... a_{nm} \end{pmatrix}_{n \times m} \\ 矩阵n \times m \\ \begin{vmatrix} a\ b\\ c\ d \end{vmatrix} = ad-bc\\ \begin{vmatrix} 1 \ 2 \ 3 \\ 4 \ 5 \ 6 \\ 1 \ 2 \ 3 \end{vmatrix} = 15-12-24+12+24-15 = 0 \\ (a1,a2,a3,....,an)A= a11 a12...a1na21 a22...a2n...an1 an2...anm n×m矩阵n×m a bc d =adbc 1 2 34 5 61 2 3 =151224+12+2415=0

n为向量 a 1 , . . . , a m a_1,...,a_m a1,...,am
( a 11 . . . . a 1 m . . . . a n 1 . . . . a n m ) \begin{pmatrix} a_{11}....a_{1m}\\ ....\\ a_{n1}....a_{nm} \end{pmatrix} a11....a1m....an1....anm

矩阵的秩: a 1 , . . . , a m a_1,...,a_m a1,...,am的秩rank A

(a_1,…,a_n) { ∑ i = 1 n : k i ∈ R } \{\sum_{i=1}^{n}:k_i\in R\} {i=1n:kiR}

矩阵的运算:

  1. M n × m × M n × m → M n × m M_{n\times m}\times M_{n\times m}\to M_{n\times m} Mn×m×Mn×mMn×m
  2. 数乘 R × M n × m → M n × m R \times M_{n\times m} \to M_{n\times m} R×Mn×mMn×m
  3. 乘法 M n × m × M m × n → M n × s M_{n\times m}\times M_{m\times n}\to M_{n\times s} Mn×m×Mm×nMn×s
  4. 转置 M n × m → M m × n M_{n\times m}\to M_{m\times n} Mn×mMm×n

A = ( a i j ) n × m A=(a_{ij})_{n\times m} A=(aij)n×m

A = ( a 11 . . . a 1 m . . . a n 1 . . . a n m ) B = ( b 11 . . . b 1 m . . . b n 1 . . . b n m ) A= \begin{pmatrix} a_{11}...a_{1m}\\ ...\\ a_{n1}...a_{nm} \end{pmatrix}\\ B = \begin{pmatrix} b_{11}...b_{1m}\\ ...\\ b_{n1}...b_{nm} \end{pmatrix} A= a11...a1m...an1...anm B= b11...b1m...bn1...bnm

A + b = ( a i j + b i j ) n × m A+b = (a_{ij}+b_{ij})_{n\times m} A+b=(aij+bij)n×m

A τ 或 A ′ = ( a i j ) n × m A^{\tau}或A' = (a_{ij})_{n\times m} AτA=(aij)n×m

K A = ( k a i j ) n × m KA = (ka_{ij})_{n\times m} KA=(kaij)n×m

$$
\begin{pmatrix}
1 \ 2 \ 3 \
4 \ 5 \ 6
\end{pmatrix}
\begin{pmatrix}
1 \ 1\
4 \ 5\
1 \ 4\
\end{pmatrix}

\begin{pmatrix}
12 \ 23 \
30 \ 53
\end{pmatrix}
$$

A ( n × m ) B ( m × s ) = C ( n × s ) C = ( C i j ) n × s C i j = ∑ k = 1 m a i k b k j A_{(n\times m)}B_{(m\times s)} = C_{(n\times s)}\\ C = (C_{ij})_{n\times s}\\ C_{ij} = \sum_{k=1}^{m}a_{ik}b_{kj} A(n×m)B(m×s)=C(n×s)C=(Cij)n×sCij=k=1maikbkj

行列式性质:

  1. 转置det不变

  2. ∣ a 11 . . . . . a k 1 . . a k n . . . ∣ = t ∣ a 11 . . . . . . . . 1 t a k 1 . . 1 t a k n . . . ∣ \begin{vmatrix} a_{11}.....\\ a_{k1}..a_{kn}\\ ... \end{vmatrix} = t\begin{vmatrix} a_{11}........\\ \frac{1}{t}a_{k1}..\frac{1}{t}a_{kn}\\ ... \end{vmatrix} a11.....ak1..akn... =t a11........t1ak1..t1akn...

  3. ∣ a 11 . . . . . a k 1 + b k 1 . . . a k n + b k n . . . . . a n n ∣ = ∣ a 11 . . . . . a k 1 . . . a k n . . . . . ∣ + ∣ a 11 . . . . . b k 1 . . . b k n . . . . . ∣ \begin{vmatrix} a_{11}.....\\ a_{k_1}+b_{k_1}...a_{k_n}+b_{k_n}\\ .....a_{nn} \end{vmatrix}= \begin{vmatrix} a_{11}.....\\ a_{k_1}...a_{k_n}\\ ..... \end{vmatrix}+ \begin{vmatrix} a_{11}.....\\ b_{k_1}...b_{k_n}\\ ..... \end{vmatrix} a11.....ak1+bk1...akn+bkn.....ann = a11.....ak1...akn..... + a11.....bk1...bkn.....

  4. 第i,j行互换,值乘-1

  5. i,j行相等,值等于0

  6. $5+2\Rightarrow $i行为j行的k倍,值=0

  7. 3 + 6 ⇒ 3+6\Rightarrow 3+6把一行的k倍加到零一行上,值不变

矩阵的初等变换

  1. i行乘k
  2. i行加上j行上的k倍
  3. i,j行互换

命题:

∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB| = |A||B| AB=A∣∣B


线性空间

y = a x + b y = ax+b y=ax+b 线性

a 1 x 1 + a 2 x 2 + . . . + a n x n a_1x_1+a_2x_2+...+a_nx_n a1x1+a2x2+...+anxn

(n元一次多项式)线性

  1. x与x之间的加法
  2. x与a之间的乘法

KaTeX parse error: Undefined control sequence: \Q at position 1: \̲Q̲[\R^n]_1

x为不定元,a为常数,a加减乘除封闭的数集

集合(L,+,·)成为域F上的线性空间,如果:

  1. $ +: L\times L \to L$
  2. $ +: 单位元 $
  3. + :交换律 +:交换律 +:交换律
  4. + :逆元 ( 负元 ) +: 逆元(负元) +:逆元(负元)
  5. + :结合律 ( a + b ) + c = a ( b + c ) +:结合律(a+b)+c=a(b+c) +:结合律(a+b)+c=a(b+c)
  6. ⋅ : F × L → L ·:F\times L \to L :F×LL
  7. ∀ x ∈ L , 1 x = x \forall x \in L,1x = x xL,1x=x
  8. ∀ k , l ∈ F , ∀ x ∈ L k l ( x ) = ( k l ) x \forall k,l\in F,\forall x \in L kl(x)=(kl)x k,lF,xLkl(x)=(kl)x
  9. ∀ k , l ∈ F , ∀ x ∈ L , ( k + l ) x = k x + l x \forall k,l\in F,\forall x \in L,(k+l)x=kx+lx k,lF,xL,(k+l)x=kx+lx
  10. ∀ k ∈ F , ∀ x , y , ∈ L , k ( x + y ) = k x + k y \forall k\in F,\forall x,y, \in L,k(x+y) = kx+ky kF,x,y,L,k(x+y)=kx+ky

1-5条说明 ( L , + ) , 为一个 A b e l 群 (L,+),为一个Abel群 (L,+),为一个Abel


群论

( G , + ) : (G,+): (G,+):

  1. 结合律
  2. 单位元e, ∀ a ∈ G , a e = a \forall a \in G ,ae = a aG,ae=a
  3. 逆元 a − 1 , ∀ a ∈ G , a a − 1 = e a^{-1},\forall a \in G ,aa^{-1} = e a1,aG,aa1=e

( R , + , × ) (R,+,\times) (R,+,×):

  1. ( R , + ) 满足交换律的群( A b e l 群) (R,+)满足交换律的群(Abel群) (R,+)满足交换律的群(Abel群)
  2. × \times ×结合律
  3. a ( b + c ) = a b + a c ( a + b ) c = a c + b c a(b+c) = ab+ac\\ (a+b)c = ac+bc a(b+c)=ab+ac(a+b)c=ac+bc

( F , + , × ) (F,+,\times) (F,+,×):

  1. ( F , + , × ) (F,+,\times) (F,+,×)是一个环
  2. ( F / { 0 } , × ) (F/\{0\},\times) (F/{0},×)是一个Abel群

( Z , + , × ) , ( Z m , + , × ) , ( 0 ‾ , 1 ‾ , . . . , m − 1 ‾ ) (\Z,+,\times),(\Z_{m},+,\times),(\overline{0},\overline{1},...,\overline{m-1}) (Z,+,×),(Zm,+,×),(0,1,...,m1)

( Z p , + , × ) (\Z_p,+,\times) (Zp,+,×)

Maxn环:
Z 2 n = { ( a 1 . . . . . . a n ) : a i ∈ Z 2 } \Z_2^{n} = \{\begin{pmatrix}a_1\\..\\..\\..\\a_n\end{pmatrix}:a_i\in \Z_2\} Z2n={ a1......an :aiZ2}

( a 1 . . . . . . a n ) \begin{pmatrix}a_1\\..\\..\\..\\a_n\end{pmatrix} a1......an 向量,向量值,线性组合,线性表出线性相关/无关

极大线性无关组,秩
( a 1 , . . . , a m ) = ( a 11 . . . a 1 m . . . . . a n 1 . . . a n m ) a ∈ F (a_1,...,a_m)=\begin{pmatrix}a_{11}...a_{1m}\\ .....\\ a_{n1}...a_{nm} \end{pmatrix}a\in F (a1,...,am)= a11...a1m.....an1...anm aF
L线性空间, W ⊂ L W\subset L WL, ( W , + , ⋅ ) (W,+,·) (W,+,⋅)是线性空间,W是L的线性子空间 W ⊆ L W \subseteq L WL,

( a 1 , . . . . , a n ) (a_1,....,a_n) (a1,....,an)的所有线性组合是线性子空间,称为该空间张成的子空间 < a 1 , . . . , a n > <a_1,...,a_n> <a1,...,an>

( a 1 , . . . , a n ) (a_1,...,a_n) (a1,...,an)线性无关,且 < a 1 ,。。。, a n > = L <a_1,。。。,a_n>=L <a1,。。。,an>=L ⟺ \Longleftrightarrow a 1 , . . . , a n a_1,...,a_n a1,...,an是L的极大线性无关组

成为L的基,基所含向量个数称为L的维数,记作dim L


线性空间

L为线性空间, e 1 , e 2 , . . . , e n e_1,e_2,...,e_n e1,e2,...,en是一组基
e 1 = ( 1 0 . . . . 0 ) e 2 = ( 0 1 . . . . 0 ) . . . e n = ( 0 . . . . 0 1 ) e_1 = \begin{pmatrix} 1\\0\\ . \\ . \\ . \\ . \\ 0\end{pmatrix} e_2 = \begin{pmatrix} 0\\1 \\. \\ . \\ .\\ .\\0 \end{pmatrix} ... e_n = \begin{pmatrix} 0 \\ . \\ .\\ . \\ . \\0 \\ 1 \end{pmatrix} e1= 10....0 e2= 01....0 ...en= 0....01
F n F_n Fn是n维的

imageimage
imageimage

n个线性无关,就是一组基

命题一

a ! , . . . . , a n a_!,....,a_n a!,....,an张成的子空间等于它极大线性无关组张成的子空间

a 1 , . . . , a n a_1,...,a_n a1,...,an线性无关

d i m < a 1 , . . . , a n > = n , r a n k < a 1 , . . . , a n > = n dim<a_1,...,a_n> = n,rank<a_1,...,a_n> = n dim<a1,...,an>=n,rank<a1,...,an>=n

a 1 , . . . , a n a_1,...,a_n a1,...,an不一定线性无关, r a n k { a 1 , . . . , a n } = r rank\{a_1,...,a_n\} = r rank{a1,...,an}=r

命题二

d i m < a 1 , . . . , a n > = r a n k { a 1 , . . . , a n } dim<a_1,...,a_n> = rank\{a_1,...,a_n\} dim<a1,...,an>=rank{a1,...,an}

定义集合 S ⊂ L S \subset L SL,rankS是S的极大线性无关组所含向量个数

S 1 S_1 S1 S 2 S_2 S2等价

  1. rank(S) = r,则S的任意r+1个向量线性相关
  2. dim(L) = r,则L任意r个线性无关向量为一组基
  3. dim(L) = r, a 1 , . . . , a r a_1,...,a_r a1,...,ar能表出L中所有向量,则是一组基
  4. U ⊆ W U \subseteq W UW,则 d i m U ≤ d i m W dimU \le dimW dimUdimW
  5. U ⊆ W , d i m U = d i m W U\subseteq W,dimU = dimW UW,dimU=dimW,则 U = W U=W U=W
  6. r a n k { a 1 , . . . , a n } = d i m < a 1 , . . . , a n > rank\{a_1,...,a_n\}=dim<a_1,...,a_n> rank{a1,...,an}=dim<a1,...,an>

线性空间命题

L is a linear space , U ⊆ L , W ⊆ L U \subseteq L,W \subseteq L UL,WL

命题1

U ∩ W ⊆ L U \cap W \subseteq L UWL

U + W : = < U ∩ W > U+W:=<U \cap W> U+W:=<UW>称为U与W的和

$ = {a_1,a_2:a_1\in U,a_2 \in W}$

命题2

< a 1 , . . . a s > + < b 1 , . . . b r > = < a 1 , . . . a s , b 1 , . . . , b r > <a_1,...a_s>+<b_1,...b_r> = <a_1,...a_s,b_1,...,b_r> <a1,...as>+<b1,...br>=<a1,...as,b1,...,br>
∑ i = 1 s k i a i + ∑ i 1 r k i b i = ∑ i = 1 s k i a i + ∑ i = s + 1 s + r k i a i a i + s = b i = ∑ i = 1 s + r k i a i \sum_{i=1}^{s}k_ia_i+\sum_{i_1}^{r}k_ib_i=\sum_{i=1}^{s}k_ia_i+\sum_{i=s+1}^{s+r}k_ia_i\\ a_{i+s} = b_i = \sum_{i=1}^{s+r}k_ia_i i=1skiai+i1rkibi=i=1skiai+i=s+1s+rkiaiai+s=bi=i=1s+rkiai

命题3

d i m U + d i m W = d i m ( U + W ) + d i m ( U ∩ W ) dim U+dim W = dim(U+W)+dim(U\cap W) dimU+dimW=dim(U+W)+dim(UW)

  • 23
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值