2024.8.21


130124202408211006


DATE #:20240821

ITEM #:DOC

WEEK #:WEDNESDAY

DAIL #:捌月拾捌

TAGS
	
< BGM = "琴师--要不要买菜" >
< theme = oi-contest >
< [NULL] >
< [空] > 
< [空] >
``` 此情可待成追忆,只是当时已惘然 -- 《锦瑟》 李商隐 ```

T1 试卷答案(exam)

时间限制: 1 s   内存限制: 512 MB   测评类型: 传统型

题目背景

在考试前一天晚上,小 A 梦到了试卷的答案。

题目描述

试卷由若干道不定项选择题构成,只有 ABCD 四个选项。每道题的答案是一个按字典序排列的非空字符串。例如,A、CD 是合法的答案,而 BB、DC 不是合法的答案。

所有题的答案构成了一个字符串。

梦醒后,小 A 连忙记下了梦中的答案。现在他可能会对这个答案字符串进行一些修改,把一段区间内的选项变为下一个选项,并且他想知道对于一个子串,共有多少种不同的包含恰好 k k k 道题的试卷,其答案恰为这个子串。两份试卷不同当且仅当某道题号相同的不定项选择题的答案不同。

具体来说,小 A 给定了一个长度为 n n n 的由 ABCD 构成的字符串 S S S,接下来要进行 q q q 次操作,分为以下两种:

1 , l , r 1,l,r 1,l,r:对于 l ≤ i ≤ r l\le i \le r lir,将 S i S_i Si 变为下一个选项,即 A 变为 B,B 变为 C,C 变为 D,D 变为 A。
2 , l , r , k 2,l,r,k 2,l,r,k:对于字符串 S S S l l l r r r 构成的子串,求有多少种不同的包含恰好 k k k 道题的试卷,其答案恰为这个子串。

对于第二个操作,由于答案可能很大,你只需要求出答案对 998244353 998244353 998244353 取模的结果。

输入格式

第一行,两个整数 n , q n,q n,q

第二行,长度为 n n n 的字符串 S S S

接下来 q q q 行,每行第一个整数 o p op op,表示操作种类。

o p = 1 op=1 op=1 时,接下来包含两个整数 l , r l,r l,r

o p = 2 op=2 op=2 时,接下来包含三个整数 l , r , k l,r,k l,r,k

输出格式

对于第二个操作,输出一行一个整数,表示答案对 998244353 998244353 998244353 取模的结果。

输入输出样例

样例输入 #1

5 6
BACDA
2 1 4 2
1 2 3
2 1 5 4
1 2 3
2 1 5 4
2 1 5 5

样例输出 #1

1
1
2
1

样例 #2

见右侧「附件下载」中的 ex_exam2.in/out

样例 #3

见右侧「附件下载」中的 ex_exam3.in/out

数据范围与约定

对于 20 % 20\% 20% 的数据,满足 1 ≤ n , q ≤ 1 0 3 1\le n,q \le 10^3 1n,q103

对于另外 30 % 30\% 30% 的数据,满足 o p = 2 op=2 op=2

对于 100% 100 % 100\% 100% 的数据,满足 1 ≤ n , q ≤ 1 0 5 1\le n,q \le 10^5 1n,q105 1 ≤ o p ≤ 2 1\le op \le 2 1op2 1 ≤ l ≤ r ≤ n 1\le l \le r \le n 1lrn 1 ≤ k ≤ n 1\le k \le n 1kn

//2024.8.21
//by white_ice
#include<bits/stdc++.h>
//#include"need.cpp"
using namespace std;
#define itn long long
#define int long long
constexpr int oo = 100005;
constexpr int mod = 998244353;
int n,q;char ch;
int st[oo];
__inline int add(int x){return x+1>=4?x+1-4:x+1;}
struct nod{itn laz,le,re,sim[4];}tree[oo<<2];
__inline bool pass(int id,itn p){return ((tree[id<<1].re+p)%4>=(tree[id<<1|1].le+p)%4);}
__inline void pushup(itn id){
    tree[id].le=tree[id<<1].le;tree[id].re=tree[id<<1|1].re;
    for(int i=0;i<=3;i++)
        tree[id].sim[i]=tree[id<<1].sim[i]+tree[id<<1|1].sim[i]+pass(id,i);
}
__inline void addtag(int id,int p){
    for (itn i=0;i<p;i++)
        for (itn j=0;j<3;j++)
            swap(tree[id].sim[j],tree[id].sim[j+1]);
    (tree[id].laz+=p)%=4;
    (tree[id].le+=p)%=4;
    (tree[id].re+=p)%=4;
}
__inline void pushdown(int id){
    if (tree[id].laz){
        addtag(id<<1,tree[id].laz);
        addtag(id<<1|1,tree[id].laz);
        tree[id].laz = 0;
    }
}
__inline void build(itn l,int r,itn id){
    if (l==r){return tree[id].le=tree[id].re=st[l],void();}
    int mid = (l+r)>>1;
    build(l,mid,id<<1);
    build(mid+1,r,id<<1|1);
    pushup(id);
}
__inline void updata(itn l,int r,int nl,int nr,int id){
    if (l>nr||r<nl)return void();
    if (l>=nl&&r<=nr){return addtag(id,1);}
    itn mid = (l+r)>>1;pushdown(id);
    updata(l,mid,nl,nr,id<<1);
    updata(mid+1,r,nl,nr,id<<1|1);
    pushup(id);
}
int lre;
__inline int query(int l,int r,int nl,int nr,int id){
    if (l>nr||r<nl)return 0;
    if (l>=nl&&r<=nr){
        int p = lre;lre = tree[id].re;
        return tree[id].sim[0]+(p>=tree[id].le);
    }
    int mid = (l+r)>>1;
    pushdown(id);int out = 0;
    out += query(l,mid,nl,nr,id<<1);
    out += query(mid+1,r,nl,nr,id<<1|1);
    return out;
}
itn c[oo],ic[oo];
__inline int qpow(itn a,int b){itn res=1;while(b){
if(b&1)(res*=a)%=mod;b>>=1;(a*=a)%=mod;}return res;}
__inline int getc(itn a,int b){return c[a]*ic[b]%mod*ic[a-b]%mod;}
main(void){
    //fre();
    cin.tie(0)->sync_with_stdio(0);
    cin >> n >> q;
    c[0] = 1;
    for (itn i=1;i<=n;i++)c[i] = c[i-1]*i%mod;
    ic[n] = qpow(c[n],mod-2);
    for (itn i=n;i>=1;i--)ic[i-1] = ic[i]*i%mod;
    for (itn i=1;i<=n;i++){cin>>ch;st[i]=ch-'A';}
    build(1,n,1);
    while (q--){
        itn op,l,r,k;
        cin >> op >> l >> r;
        if (op==1)
            updata(1,n,l,r,1);
        else {
            cin >> k;k--;
            lre = -1;
            itn cnt = query(1,n,l,r,1);
            //p_(cnt);
            if (cnt>k) cout << 0 << '\n';
            else cout << getc(r-l-cnt,k-cnt) << '\n';
        }
    }
    exit(0);
}

使用线段树记录每个字符转化后的不下降子序列

开四棵树分别维护即可

我们在每次查询时,考虑是否需要将两面的线段合并

在线段树的每个节点上同时记录该区间的左端点和右端点字符

合并时进行比较

考虑是否需要将区间内序列数减一

在得出一段区间内上升序列数时

考虑该怎么计数,在求出序列数时,如果序列数大于k

那么一定不满足要求,当小于k时,我们要将这些段分开,多加入k-序列数个段,

也就是加入这么多断点

使用组合意义计数

设段中有序列数为x

那么数量就是 C l − r − x k − x C_{l-r-x}^{k-x} Clrxkx,通过此计数即可


T2 [A+B Problem(ez)](#2310. A+B Problem(ez) - 题目 - 石家庄二中信息学在线评测系统 (sjzezoj.com))

时间限制: 2 s   内存限制: 512 MB   测评类型: 传统型

题目描述

A
本题有 T T T 组数据。对于一组数据,有 q q q 组询问,每次询问给定两个非负整数 a , b a,b a,b,输出 ( a + b )   m o d   2 32 (a+b)\bmod2^{32} (a+b)mod232

你需要“离线”回答每组询问。具体地,记第 i i i 次回答的答案为 a n s i ans_i ansi,在第 i i i 组询问中你读入 a i ′ , b i ′ a_i',b_i' ai,bi 后,真正询问的值为 a i = a i ′ ⊕ a n s i − 1 , b i = b i ′ ⊕ a n s i − 1 a_i=a_i' \oplus ans_{i−1},b_i=b_i' \oplus ans_{i−1} ai=aiansi1,bi=biansi1。特殊地,记 a n s 0 = a n s q ans_0=ans_q ans0=ansq

请求出 a n s 1 , . . . , a n s q ans_1,...,ans_q ans1,...,ansq 并输出。如果存在多组解,请输出字典序最小的解。

输入格式

本题有多组数据。第一行一个正整数 T T T,表示测试数据组数。

对于每组数据,第一行一个正整数 q q q。 接下来 q q q 行,第 i 行两个非负整数 a i ′ , b i ′ a_i' , b_i' ai,bi

数据保证 ∑ q ≤ 3 × 1 0 5 \sum q ≤ 3 × 10^5 q3×105,保证有解。

输出格式

对于一组数据,输出 q q q 行,第 i i i 行表示第 i i i 组询问的答案 a n s i ans_i ansi

输入输出样例

样例输入 #1

2
2
0 1
1 0
3
3 2
0 0
3 0

样例输出 #1

1
1
1
2
3

样例输入 #2

1
10
3749472293 4154891904
3224347513 4103595831
791851711 3055161978
4065152591 2368391812
3691608355 4160733936
3728210076 264996297
460392156 105250996
3455209177 2288371548
2800417316 1992099764
2564050154 2328370940

样例输出 #2

853870281
3107817390
2771831525
2140636427
738673699
368934569
575141522
2581064217
782761450
1524864022

数据范围与约定

1 ≤ T ≤ 2 × 1 0 4 1 ≤ T ≤ 2 × 10^4 1T2×104

1 ≤ q ≤ 3 × 1 0 5 1 ≤ q ≤ 3 × 10^5 1q3×105

0 ≤ a i , b i ≤ 2 32 − 1 0\le a_i,b_i\le 2^{32}-1 0ai,bi2321

子任务 1(20分): q ≤ 32 q\le 32 q32

子任务 2(20分): q > 32 q>32 q>32

子任务 3(60分):无特殊限制。

//2024.8.21
//by white_ice
#include<bits/stdc++.h>
//#include"need.cpp"
using namespace std;
#define itn unsigned
#define int unsigned
constexpr int oo = 300005;
itn t;itn q;
int st[oo][2];
itn ned[oo];
main(void){
    //fre();
    // p_(1&1);
    // p_(1&0);
    // p_(0&0);
    // p_(0&1);
    cin.tie(0)->sync_with_stdio(0);
    cin >> t;
    while(t--){
        cin >> q;
        for(itn i=1;i<=q;i++){
            cin >> st[i][0] >> st[i][1];
            ned[i] = (st[i][1]&1)^(st[i][0]&1);
        }
        for(itn i=0;i<32;i++){
            for(itn j=0;j<q;j++){
                int p = (q+j-1)%q;
                ned[j+1]|=((st[j+1][0]^ned[p+1])+
                (st[j+1][1]^ned[p+1]))&(1<<i);
            }
        }
        copy(ned+1,ned+q+1,ostream_iterator<unsigned>(cout,"\n"));
    }
    exit (0);
}


不会逐位确定的厉害做法。

测试若干组随机数据发现解存在且唯一。

考虑知道上一个答案之后递推当前答案,答案首先会异或 a i + b i a_i+b_i ai+bi

然后考虑上一个答案的第 i i i 位为 1 1 1 1 会对当前的答案产生什么影响。

容易发现如果当前的 a i a_i ai b i b_i bi 在第 i i i 位不同,异或一下也等同于没有影响。

如果相同的话,设下一个满足 a i a_i ai b i b_i bi 在当前位相同的位为第 j j j 位,那么答案的第 i + 1 i+1 i+1 j j j 位全部异或了 1 1 1,如下图。

换句话说,如果当前的 a i a_i ai b i b_i bi 在第 i i i 位不同且按照上述方法确定了 j j j,那么当前答案的第 i + 1 i+1 i+1 j j j 位全部异或上一个答案的第 i i i 位。

img

(作图失误,从左到右为二进制位从低到高)

设变量 x 0 , x 1 … x 31 x_0,x_1\dots x_{31} x0,x1x31 a n s 0 ans_0 ans0 从左往右的每一位的值,则根据上面的分析, a n s i ans_i ansi 的每一位的值都可以看做某个 x i x_i xi 0 / 1 0/1 0/1 异或起来。

可以直接递推后由 高斯消元。由于解存在且唯一,高斯消元是可以进行的。

看不懂题解可以看代码。

场上写+调这个玩意花了 2.5h 快吐血了,鉴定为诈骗。


T3 编队(team)

时间限制: 2 s   内存限制: 512 MB   测评类型: 传统型

题目描述

小 Z 喜欢打某款游戏,在游戏中他有 n n n 个英雄,每个英雄有一个武力值 w i w_i wi,现在他要将自己的英雄分为两队,每队人数任意。

他发现如果两个英雄 i i i j j j 的武力值相加不小于 m m m 且不在同一队,那么这两个英雄就可以打出组合技。

请问最多能有多少对英雄打出组合技(一个英雄可能打出多个组合技),同时还需算出有多少种分队方案可以达到此效果。

输入格式

第一行两个正整数 n , m n, m n,m

第二行 n n n 个自然数,第 i i i 个表示 w i w_i wi

输出格式

一行两个整数,用空格隔开,分别表示最多的配合默契对数与可以达到此效果的方案数,方案数对 1 0 9 + 7 10^9 + 7 109+7 取模。

输入输出样例

样例输入 #1

2 10
5 5

样例输出 #1

1 2

样例解释 #1

样例 1 的解释与说明。

样例 #2

见右侧「附件下载」中的 ex_data2.in/out

数据范围与约定

对于全部数据, n ≤ 2000 , m ≤ 2 × 1 0 6 , w i ≤ 1 0 6 n \leq 2000, m \leq 2×10^6, w_i \leq 10^6 n2000,m2×106,wi106

存在 30% 30 % 30 \% 30% 的数据满足 n ≤ 18 n \leq 18 n18

另有 20% 20 % 20 \% 20% 的数据满足 w i w_i wi 排序后是等差数列。

//2024.8.21
//by white_ice
//#2311. 编队(team)
//计数,DP
#include<bits/stdc++.h>
//#include"need.cpp"
using namespace std;
#define itn long long
#define int long long 
constexpr int oo = 2003;
constexpr int inf = 0x3f3f3f3f;
constexpr int mod = 1000000007;
itn n,m;int sp[oo];
int rm[oo],stc[oo];
struct nod{itn v=-inf,c=0;
nod(int vl=-inf,int cl=0){v=vl,c=cl;}}f[oo][oo];
__inline nod operator+(nod a,int b){a.v = a.v+b;return a;}
__inline nod operator*(nod a,nod b){if(a.v>b.v)return a;
if(a.v<b.v)return b; (a.c+=b.c)%=mod;return a;}
itn pw[oo];
main(void){
    //fre();
    cin.tie(0)->sync_with_stdio(0);
    cin >> n >> m ;
    for (itn i=1;i<=n;i++)cin >> sp[i];
    sort(sp+1,sp+n+1,greater<int>());
    int tmp = n;
    for(int i=1;i<=n;i++){
		while(tmp>0&&sp[i]+sp[tmp]<m)tmp--;
		rm[i]=min(i-1,tmp);
    }
	int k=1;
	while(k<=n&&rm[k]==k-1)k++;
	for(int i=k;i<=n;i++)stc[rm[i]]++;
	f[0][0]=(nod){0,1}; pw[0]=1;
	for(int i=1;i<=n;i++)
		pw[i]=2*pw[i-1]%mod;
	for(int i=1;i<k;i++){
		for(int j=0;j<=i;j++){
			f[i][j]=f[i-1][j]+j;
			if(j)f[i][j]=f[i][j]*(f[i-1][j-1]+(i-j));
		}
		for(int j=0;j<=i;j++){
			f[i][j]=f[i][j]+(stc[i]*max(j,i-j));
			if(j+j==i)f[i][j].c=pw[stc[i]]*f[i][j].c%mod;
		}
	}
	nod out;
	for(int i=0;i<k;i++) out=out*f[k-1][i];
	while(stc[0]--) out.c=2*out.c%mod;
	cout << out.v << ' ' << out.c;
    exit (0);
}

主要是转移顺序问题,我们希望的一个序列能满足对于某个位置,前面都满足一个条件,有了这个条件,前面的东西就可以一视同仁,只记录个数来处理。

很容易想到将数组排序后处理,发现这不行,因为可能转移的是之前的某个前缀,而此时当时的状态已经被破坏了。

考虑将某个数之前都放上能和他配对的,发现这是不现实的(手模一下根本做不到)

将限制放宽,将某个数之前都放上能和他配对的,或者都不能和他配对的。

再排好序的数组中,有这样的性质,若 a 1 + a n > = m a_1+a_n >=m a1+an>=m a n a_n an 此时能和所有人配对。

反之 a 1 a_1 a1 不能和所有人配对。

那我们分讨将其插到最后,就可以满足前面都能和他配对或都不能了。

另一种方法是考虑将 < m / 2 <m/2 <m/2 的数,挂到最小的能和他配对的数上。

从大到小访问到挂到的这个点的时候,此时所有挂上的数只能和之前的大数配对,不能和之后的任何数配对,这也是满足转移条件的。

> m / 2 >m/2 >m/2 的数能和所有大数配对,这也是满足的。

考虑挂上的小数应该如何放置,一定是贪心的放到当前最大的集合里面,如果一样大,那就是 2 c n t 2^cnt 2cnt 次方。

注意有些小数谁都匹配不了,肯定是随便放就行。

这也是 R e t f Retf Retf 的做法。

一个类似的题: AT_arc148_e [ARC148E] ≥ K


T4 序列(seq)

时间限制: 1 s   内存限制: 512 MB   测评类型: 传统型

题目描述

有一个长度为 n n n 的序列 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,,an,序列里的每个元素都是 [ 1 , 1 0 9 ] [1,10^9] [1,109] 内的正整数。

现在已知了 m m m 条信息,每条信息形如 i , j , k , x i,j,k,x i,j,k,x,表示这个序列满足 a i + a j + a k − max ⁡ ( a i , a j , a k ) − min ⁡ ( a i , a j , a k ) = x a_i+a_j+a_k−\max(a_i,a_j,a_k)−\min(a_i,a_j,a_k)=x ai+aj+akmax(ai,aj,ak)min(ai,aj,ak)=x

请构造一个满足条件的序列。

输入格式

第一行两个正整数 n , m n,m n,m

接下来 m m m 行,每行四个正整数 i , j , k , x i,j,k,x i,j,k,x,表示一条信息。

输出格式

如果无解,第一行输出 NO

如果有解,第一行输出 YES。第二行输出 n n n 个正整数 ,表示你构造的满足条件的序列 a a a,你需要保证每个 a i a_i ai 都是 [ 1 , 1 0 9 ] [1,10^9] [1,109] 内的正整数。

输入输出样例

样例输入 #1

6 4
1 3 4 2
1 2 5 6
3 6 6 7
2 4 5 3

样例输出 #1

YES
6 8 2 2 3 7

样例输入 #2

5 4
1 2 3 4
2 3 4 5
3 4 5 3
1 3 4 6

样例输出 #2

NO

数据范围与约定

对于全部数据, 1 ≤ n , m ≤ 1 0 5 , 1 ≤ i , j , k ≤ n , 1 ≤ x ≤ 1 0 9 1≤n,m≤10^5,1≤i,j,k≤n,1≤x≤10^9 1n,m105,1i,j,kn,1x109

子任务 1(20 分): n , m ≤ 10 n,m≤10 n,m10

子任务 2(10 分): m = ( n 3 ) m=\binom n 3 m=(3n),且对于任意一条信息, i ≠ j , j ≠ k , k ≠ i i≠j,j≠k,k≠i i=j,j=k,k=i,对于任意一个满足条件的集合 { i , j , k } \{i,j,k\} {i,j,k},在信息中恰好出现一条。

子任务 3(30 分): n , m ≤ 1000 n,m≤1000 n,m1000

子任务 4(40 分):无特殊限制。

//2024.8.21
//by white_ice
//#2312. 序列(seq)
#include<bits/stdc++.h>
//#include"need.cpp"
using namespace std;
#define itn int
constexpr int oo = 1e6+10;
int n,m;
int x[oo],y[oo],z[oo],val[oo];
vector <int>id[oo],d[oo];
int sta[oo],top;
bool vis[oo];
struct nod{int v,nxt;}ed[oo<<1];int head[oo],sum;
void add (int u,int v) {
    ed[++sum].v = v;
    ed[sum].nxt = head[u];
    head[u] = sum;
}
int cnt,tot,belong[oo],dfn[oo],low[oo],dfntot;
void tarjan (int x) {
    dfn[x] = low[x] = ++dfntot;
    sta[++top] = x,vis[x] = 1;
    for (int i=head[x];i;i=ed[i].nxt){
        int to = ed[i].v;
        if (!dfn[to]){
            tarjan(to);
            low[x] = min(low[x],low[to]);
        }
        else if(vis[to]) low[x] = min(low[x],dfn[to]);
    }
    if (low[x]==dfn[x]) {
        ++tot;
        while (sta[top]!=x) {
            vis[sta[top]]=0;
            belong[sta[top]]=tot;
            top--;
        }
        vis[sta[top]] = 0;
        belong[sta[top]] = tot;
        top--;
    }
}
main(void){
    //fre();
    cin.tie(0)->sync_with_stdio(0);
    cin >> n >> m;
    for (int i=1;i<=m;i++) {
        cin >> x[i] >> y[i] >> z[i] >> val[i];
        d[x[i]].push_back(val[i]);
        d[y[i]].push_back(val[i]);
        d[z[i]].push_back(val[i]);
    }
    for (int i=1;i<=n;i++){
        if (d[i].empty()) continue;
        sort (d[i].begin(),d[i].end());
        d[i].erase (unique(d[i].begin(),d[i].end()),d[i].end());
        for (int j=0;j<int(d[i].size());j++) {
            id[i].push_back(++cnt);
            cnt++; 
            if (j) add(id[i][j],id[i][j-1]),
                add(id[i][j-1]+1,id[i][j]+1);
        }
    }
    for (int i=1;i<=m;i++) {
        int a = lower_bound(d[x[i]].begin(),d[x[i]].end(),val[i])-d[x[i]].begin();
        int b = lower_bound(d[y[i]].begin(),d[y[i]].end(),val[i])-d[y[i]].begin();
        int c = lower_bound(d[z[i]].begin(),d[z[i]].end(),val[i])-d[z[i]].begin();
        add(id[x[i]][a],id[y[i]][b]+1);
        add(id[x[i]][a],id[z[i]][c]+1);
        add(id[y[i]][b],id[x[i]][a]+1);
        add(id[y[i]][b],id[z[i]][c]+1);
        add(id[z[i]][c],id[x[i]][a]+1);
        add(id[z[i]][c],id[y[i]][b]+1);
        if (a && b) add(id[x[i]][a-1]+1,id[y[i]][b-1]),
            add(id[y[i]][b-1]+1,id[x[i]][a-1]);
        if (a && c) add(id[x[i]][a-1]+1,id[z[i]][c-1]),
            add(id[z[i]][c-1]+1,id[x[i]][a-1]);
        if (b && c) add(id[y[i]][b-1]+1,id[z[i]][c-1]),
            add(id[z[i]][c-1]+1,id[y[i]][b-1]);
   
    }
    for (int i = 1; i <= cnt; i++)
        if (!dfn[i]) tarjan(i);
    for (int i = 1; i <= cnt; i++) {
        for (int j = 0; j < int (d[i].size()); j++)
            if (belong[id[i][j]] == belong[id[i][j]+1]) {
                cout << "NO";
                return 0;
            }
    }
    cout << "YES\n";
    for (int i = 1; i <= n; i++) {
        if (d[i].empty()) {
            cout << "1 ";
            continue;
        }
        int x = 0;
        for ( ; x < int (d[i].size()) && belong[id[i][x]] < belong[id[i][x]+1]; x++) ;
        if (x == int (d[i].size()))
            ++d[i][--x];
        cout << d[i][x] << ' ';
    }
    return 0;
}

这个条件还是比较好转化的:

就是 i , j , k i,j,k i,j,k 的中位数是 x x x

三元限制不好处理,基本没有能处理三元限制的手段。

改成分讨+二元限制:

  • a i > x a_i>x ai>x ,则要求 a j ≤ x ∧ a k ≤ x a_j \le x \wedge a_k \le x ajxakx
  • a i < x a_i<x ai<x ,则要求 a j ≥ x ∧ a k ≥ x a_j \ge x \wedge a_k \ge x ajxakx

轮换一下,这样有 6 6 6 个条件。

发现都是 “若则” 类型的,想到了 sat。

发现都是且的关系,很好,不用拆了。

对于不等关系,我们设 p ( i , x ) p(i,x) p(i,x) 表示 i > x i>x i>x 成立, ¬ p ( i , x ) \neg p(i,x) ¬p(i,x) 表示 i ≤ x i \le x ix

考虑满足这些约束是否考虑周全。

发现有些隐含的关系还没处理,一个类似前缀和差分大于 0 的问题:

显然有 p ( i , x ) → p ( i , x − k ) p(i,x) \rightarrow p(i,x-k) p(i,x)p(i,xk) ¬ p ( i , x ) → ¬ p ( i , x + k ) \neg p(i,x) \rightarrow \neg p(i,x+k) ¬p(i,x)¬p(i,x+k)

同时有 $p(i,0) = 1 , , p(i,Inf) = 0$

这个强制等于的处理是如果不等于就推出等于,这样一定只能取等于。

当然每个点拆成值域个点是不可能的,我们只把和他有关的值存起来离散化。

最后求答案的时候需要注意,对于某个点拆成的一条链,他肯定是前一段满足 p ( i , x ) p(i,x) p(i,x) 后一段满足 ¬ p ( i , x ) \neg p(i,x) ¬p(i,x),找到中间的分界点就是答案。

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值