【JZOJ5330】密码 && Kummer Theorem

13 篇文章 0 订阅
2 篇文章 0 订阅

【JZOJ5330】密码

(File IO): input:password.in output:password.out
Time Limits: 1000 ms Memory Limits: 262144 KB

Description
Description
Input
Input
Output
Output
Sample Input

4 2 2

Sample Output

2

Data Constraint
Data
Hint
样例解释
Hint


解题思路

看到 pk|Csl(p) 这种东西,立刻想到库默尔定理

库默尔定理

Theorem:
设m,n为正整数,p为素数,则 Cmm+n 含p的幂次等于m+n在p进制下的进位次数。

反过来
Cmn 含p的幂次等于m-n在p进制下的退位次数。

定理证明:
f(n,p) 表示n含p的幂次,有 f(n!,p)=inpi
那么 Cnm=m!n!(mn)!f(Cnm,p)=f(m!,p)f(n!,p)f((mn)!,p)

f(Cnm,p)=impinpimnpi

mpinpimnpi 的取值只可能是{0,1},而且当且仅当m-n在p进制下第i位退位时,它的值为1。
所以 Cmn 含p的幂次等于m-n在p进制下的退位次数。
原命题得证!


回到题目,我们只要统计出所有l-s在p进制下退位次数不小于k的组数
考虑从低位到高位转移数位DP:
fi,j,0/1,0/1 表示,在p进制下做到第i位,退位次数为j,i位其后的数是否大于上界的后i位,是否退位
转移方程自己推推就好了,几个等差数列而已。

#include<cstring>
#include<cstdio>
#include<cctype>
#include<algorithm>
#define mo 1000000007
using namespace std;
typedef long long ll;
const int N=3333;
int f[N][N][2][2],k;
ll t[1001],n[N],ans,p;
int main(){
    freopen("password.in","r",stdin);
    freopen("password.out","w",stdout);
    for(char c;(c=getchar())>='0' && c<='9';)t[++t[0]]=c-'0';scanf("%lld %d",&p,&k);
    for(int i=1;i+i<=t[0];i++)swap(t[i],t[t[0]+1-i]);
    while(t[0]){
        for(int i=t[0];i;i--){
            if(i>1)t[i-1]+=t[i]%p*10;else n[++n[0]]=t[i]%p;t[i]/=p;
        }while(t[0] && !t[t[0]])t[0]--;
    }if(n[0]<k){printf("0");return 0;}
    f[0][0][0][0]=1;
    for(int i=0;i<n[0];i++)for(int j=0;j<=i;j++){
        f[i+1][j][0][0]=((ll)f[i+1][j][0][0]+(n[i+1]+1)*(n[i+1]+2)/2%mo*(ll)f[i][j][0][0]+n[i+1]*(n[i+1]+1)/2%mo*((ll)f[i][j][0][1]+(ll)f[i][j][1][0])+n[i+1]*(n[i+1]-1)/2%mo*(ll)f[i][j][1][1])%mo;
        f[i+1][j+1][0][1]=((ll)f[i+1][j+1][0][1]+(2*p-n[i+1]-2)*(n[i+1]+1)/2%mo*(ll)f[i][j][0][0]+(2*p-n[i+1])*(n[i+1]+1)/2%mo*(ll)f[i][j][0][1]+(2*p-n[i+1]-1)*n[i+1]/2%mo*(ll)f[i][j][1][0]+(2*p-n[i+1]+1)*n[i+1]/2%mo*(ll)f[i][j][1][1])%mo;
        f[i+1][j][1][0]=((ll)f[i+1][j][1][0]+(n[i+1]+p+2)*(p-n[i+1]-1)/2%mo*(ll)f[i][j][0][0]+(p+n[i+1])*(p-n[i+1]-1)/2%mo*(ll)f[i][j][0][1]+(p+n[i+1]+1)*(p-n[i+1])/2%mo*(ll)f[i][j][1][0]+(p+n[i+1]-1)*(p-n[i+1])/2%mo*(ll)f[i][j][1][1])%mo;
        f[i+1][j+1][1][1]=((ll)f[i+1][j+1][1][1]+(p-n[i+1]-2)*(p-n[i+1]-1)/2%mo*(ll)f[i][j][0][0]+(p-n[i+1])*(p-n[i+1]-1)/2%mo*((ll)f[i][j][0][1]+(ll)f[i][j][1][0])+(p-n[i+1]+1)*(p-n[i+1])/2%mo*(ll)f[i][j][1][1])%mo;
    }
    for(int i=k;i<=n[0];i++)ans=ans+f[n[0]][i][0][0];printf("%lld",ans%mo);
    fclose(stdin);fclose(stdout);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值