Description
Input
Output
Sample Input
2 2 1 1 3 0
Sample Output
6
Data Constraint
Hint
analysis
因为不能不走,那么将(0,0)也归为一种不合法的走法
那k个向量真的好难看哦
于是考虑用容斥排除他们对做题造成的影响。
设
f[i][x][y]
f
[
i
]
[
x
]
[
y
]
表示i步走到向量(x,y)处的方案数,
g[i][x]
g
[
i
]
[
x
]
表示犯规i步走到(10x,10x)处的方案数
容斥可以知道答案等于至少0步犯规的方案数-至少1步的+至少两步的-。。。
Ans=∑Rj=0∑Tx/10i=1g[j][i]∗f[R−j][Tx−10i][Ty−10i]∗CjR∗(−1)j
A
n
s
=
∑
j
=
0
R
∑
i
=
1
T
x
/
10
g
[
j
]
[
i
]
∗
f
[
R
−
j
]
[
T
x
−
10
i
]
[
T
y
−
10
i
]
∗
C
R
j
∗
(
−
1
)
j
f怎么推?
发现一种走法(通过力的分解)可以拆解成横着走x步,竖着走y步,这两者互不干扰
只用将其拆解成
f0[i][x]
f
0
[
i
]
[
x
]
表示i步横着走了x格的方案数,
f1[i][x]
f
1
[
i
]
[
x
]
表示竖着的方案数
那么
f[i][x][y]=f0[i][x]∗f1[i][y]
f
[
i
]
[
x
]
[
y
]
=
f
0
[
i
]
[
x
]
∗
f
1
[
i
]
[
y
]
#include<cstring>
#include<cstdio>
#define T 1610
#define N 810
#define mo 10007
using namespace std;
int Mx,My,Tx,Ty,fx[T][N],sumx[T][N],fy[T][N],sumy[T][N],g[T][N/10],R,k,fb[N],fr[T],ifr[T];
int qpow(int a,int i){
int r=1;for(;i;i>>=1,a=a*a%mo)if(i&1)r=r*a%mo;return r;
}
int main(){
scanf("%d %d %d %d %d %d",&Tx,&Ty,&Mx,&My,&R,&k);
fb[0]=0;
for(int i=1;i<=k;i++){
int x;scanf("%d",&x);fb[i]=x/10;
}
fx[0][0]=1;fy[0][0]=1;
for(int i=0;i<=Tx;i++)sumx[0][i]=1;for(int i=0;i<=Ty;i++)sumy[0][i]=1;
for(int i=1;i<=R;i++)for(int j=0;j<=Tx;j++){
if(j<=Mx)fx[i][j]=sumx[i-1][j];else fx[i][j]=(sumx[i-1][j]+mo-sumx[i-1][j-Mx-1])%mo;
sumx[i][j]=((j?sumx[i][j-1]:0)+fx[i][j])%mo;
}
for(int i=1;i<=R;i++)for(int j=0;j<=Ty;j++){
if(j<=My)fy[i][j]=sumy[i-1][j];else fy[i][j]=(sumy[i-1][j]+mo-sumy[i-1][j-My-1])%mo;
sumy[i][j]=((j?sumy[i][j-1]:0)+fy[i][j])%mo;
}
g[0][0]=1;
for(int i=1;i<=R;i++)for(int j=0;j<=Tx/10 && j<=Ty/10;j++)for(int l=0;l<=k;l++)
if(j>=fb[l])g[i][j]=(g[i][j]+g[i-1][j-fb[l]])%mo;
int ans=0;fr[0]=ifr[0]=1;
for(int i=1;i<=R;i++)fr[i]=fr[i-1]*i%mo;ifr[R]=qpow(fr[R],mo-2);
for(int i=R-1;i;i--)ifr[i]=ifr[i+1]*(i+1)%mo;
for(int i=0;i<=R;i++){
int sum=0;
for(int j=0;j<=Tx/10 && j<=Ty/10;j++)sum+=g[i][j]*fx[R-i][Tx-j*10]%mo*fy[R-i][Ty-j*10]%mo;
sum%=mo;ans=(ans+mo+((i&1)?-1:1)*sum*(fr[R]*ifr[i]%mo*ifr[R-i]%mo)%mo)%mo;
}printf("%d",ans);
return 0;
}