【JZOJ5664】凫趋雀跃

4 篇文章 0 订阅
2 篇文章 0 订阅

Description
Desc

Input
In

Output
Out

Sample Input

2 2 1 1 3 0

Sample Output

6

Data Constraint
Data

Hint
Hint


analysis

因为不能不走,那么将(0,0)也归为一种不合法的走法
那k个向量真的好难看哦
于是考虑用容斥排除他们对做题造成的影响。
f[i][x][y] f [ i ] [ x ] [ y ] 表示i步走到向量(x,y)处的方案数, g[i][x] g [ i ] [ x ] 表示犯规i步走到(10x,10x)处的方案数

容斥可以知道答案等于至少0步犯规的方案数-至少1步的+至少两步的-。。。
Ans=Rj=0Tx/10i=1g[j][i]f[Rj][Tx10i][Ty10i]CjR(1)j A n s = ∑ j = 0 R ∑ i = 1 T x / 10 g [ j ] [ i ] ∗ f [ R − j ] [ T x − 10 i ] [ T y − 10 i ] ∗ C R j ∗ ( − 1 ) j
f怎么推?
发现一种走法(通过力的分解)可以拆解成横着走x步,竖着走y步,这两者互不干扰
只用将其拆解成 f0[i][x] f 0 [ i ] [ x ] 表示i步横着走了x格的方案数, f1[i][x] f 1 [ i ] [ x ] 表示竖着的方案数
那么 f[i][x][y]=f0[i][x]f1[i][y] f [ i ] [ x ] [ y ] = f 0 [ i ] [ x ] ∗ f 1 [ i ] [ y ]

#include<cstring>
#include<cstdio>
#define T 1610
#define N 810
#define mo 10007

using namespace std;

int Mx,My,Tx,Ty,fx[T][N],sumx[T][N],fy[T][N],sumy[T][N],g[T][N/10],R,k,fb[N],fr[T],ifr[T];

int qpow(int a,int i){
    int r=1;for(;i;i>>=1,a=a*a%mo)if(i&1)r=r*a%mo;return r;
}

int main(){
    scanf("%d %d %d %d %d %d",&Tx,&Ty,&Mx,&My,&R,&k);
    fb[0]=0;
    for(int i=1;i<=k;i++){
        int x;scanf("%d",&x);fb[i]=x/10;
    }
    fx[0][0]=1;fy[0][0]=1;
    for(int i=0;i<=Tx;i++)sumx[0][i]=1;for(int i=0;i<=Ty;i++)sumy[0][i]=1;
    for(int i=1;i<=R;i++)for(int j=0;j<=Tx;j++){
        if(j<=Mx)fx[i][j]=sumx[i-1][j];else fx[i][j]=(sumx[i-1][j]+mo-sumx[i-1][j-Mx-1])%mo;
        sumx[i][j]=((j?sumx[i][j-1]:0)+fx[i][j])%mo;
    }
    for(int i=1;i<=R;i++)for(int j=0;j<=Ty;j++){
        if(j<=My)fy[i][j]=sumy[i-1][j];else fy[i][j]=(sumy[i-1][j]+mo-sumy[i-1][j-My-1])%mo;
        sumy[i][j]=((j?sumy[i][j-1]:0)+fy[i][j])%mo;
    }
    g[0][0]=1;
    for(int i=1;i<=R;i++)for(int j=0;j<=Tx/10 && j<=Ty/10;j++)for(int l=0;l<=k;l++)
        if(j>=fb[l])g[i][j]=(g[i][j]+g[i-1][j-fb[l]])%mo;
    int ans=0;fr[0]=ifr[0]=1;
    for(int i=1;i<=R;i++)fr[i]=fr[i-1]*i%mo;ifr[R]=qpow(fr[R],mo-2);
    for(int i=R-1;i;i--)ifr[i]=ifr[i+1]*(i+1)%mo;
    for(int i=0;i<=R;i++){
        int sum=0;
        for(int j=0;j<=Tx/10 && j<=Ty/10;j++)sum+=g[i][j]*fx[R-i][Tx-j*10]%mo*fy[R-i][Ty-j*10]%mo;
        sum%=mo;ans=(ans+mo+((i&1)?-1:1)*sum*(fr[R]*ifr[i]%mo*ifr[R-i]%mo)%mo)%mo;
    }printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值