# FZU OJ 2140 Forever 0.5 （几何）

Problem 2140 Forever 0.5

## Problem Description

Given an integer N, your task is to judge whether there exist N points in the plane such that satisfy the following conditions:

1. The distance between any two points is no greater than 1.0.

2. The distance between any point and the origin (0,0) is no greater than 1.0.

3. There are exactly N pairs of the points that their distance is exactly 1.0.

4. The area of the convex hull constituted by these N points is no less than 0.5.

5. The area of the convex hull constituted by these N points is no greater than 0.75.

## Input

The first line of the date is an integer T, which is the number of the text cases.

Then T cases follow, each contains an integer N described above.

1 <= T <= 100, 1 <= N <= 100

## Output

For each case, output “Yes” if this kind of set of points exists, then output N lines described these N points with its coordinate. Make true that each coordinate of your output should be a real number with AT MOST 6 digits after decimal point.

Your answer will be accepted if your absolute error for each number is no more than 10-4.

Otherwise just output “No”.

See the sample input and output for more details.

3235

## Sample Output

NoNoYes0.000000 0.525731-0.500000 0.162460-0.309017 -0.4253250.309017 -0.4253250.500000 0.162460

1.两点之间的距离不大于1

2.任意点到原点的距离不大于1

3.有n对点的距离刚好等于1

4.n个点构成的n边形的面积不小于0.5

5.n个点构成的n边形的面积不大于0.75

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
using namespace std;
double x[110],y[110];
const double temp=0.001;
void solve()
{
x[0]=0,y[0]=0;//原点
x[1]=1,y[1]=0;//第二个点
x[2]=0.5,y[2]=sqrt(1-0.25);//等边三角形的三个点
x[3]=0.5,y[3]=y[2]-1;
for(int i=4;i<110;i++)
{
y[i]=i*temp;//离散化
x[i]=sqrt(1-y[i]*y[i]);
}
}
int main()
{
int t,n;
solve();
cin>>t;
while(t--)
{
cin>>n;
if(n<4)
printf("No\n");
else
{
printf("Yes\n");
for(int i=0;i<n;i++)
printf("%.6lf %.6lf\n",y[i],x[i]);
}
}
return 0;
}

• 评论

• 上一篇
• 下一篇