相关高斯分布的MIMO信道矩阵的容量统计特征推导

本文是IEEE TIT(Trans on Information Theory)一篇文章的阅读笔记,文章链接如下:
A. L. Moustakas, S. H. Simon, and A. M. Sengupta, “MIMO capacity
through correlated channels in the presence of correlated interferers and
noise: A (not so) large N analysis,” IEEE Trans. Inf. Theory, vol. 49,
no. 10, pp. 2545–2561, Oct. 2003.

文章梗概

本文的主要工作是给出了相关MIMO信道模型下容量的估计方法。
文章结构:

  1. I-A开始,介绍文章所用的部分数学表述及系统模型;
  2. II介绍本文所用的数学架构;并在II-A中讨论无interferer且AWGN的情况,在II-B中讨论有interferer且有相关噪声的情况;
  3. IV介绍在其他场景中的应用,此处不表。

文章部分数学表述及系统模型

数学表述:定义在矩阵元上的三种积分

1、 D c X = ∏ a = 1 m rows  ∏ α = 1 m cols  d Re ⁡ X a α d Im ⁡ X a α 2 π D_{c} \boldsymbol{X}=\prod_{a=1}^{m_{\text {rows }}} \prod_{\alpha=1}^{m_{\text {cols }}} \frac{d \operatorname{Re} X_{a \alpha} d \operatorname{Im} X_{a \alpha}}{2 \pi} DcX=a=1mrows α=1mcols 2πdReXaαdImXaα
2、 d μ ( T , R ) = ∏ a = 1 m r o w s ∏ α = 1 m c o l s d T a α d R α a 2 π i d \mu(\boldsymbol{T}, \boldsymbol{R})=\prod_{a=1}^{m_{\mathrm{rows}}} \prod_{\alpha=1}^{m_{\mathrm{cols}}} \frac{d T_{a \alpha} d R_{\alpha a}}{2 \pi i} dμ(T,R)=a=1mrowsα=1mcols2πidTaαdRαa
3、 D g A = ∏ a = 1 m rows  ∏ α = 1 m cols  d A a α d A ˉ a α D_{g} \boldsymbol{A}=\prod_{a=1}^{m_{\text {rows }}} \prod_{\alpha=1}^{m_{\text {cols }}} d A_{a \alpha} d \bar{A}_{a \alpha} DgA=a=1mrows α=1mcols dAaαdAˉaα

系统模型

传输过程表述如下:
y = ρ s n t G s x s + ρ i n i G i x i + z (1) \boldsymbol{y}=\sqrt{\frac{\rho_{s}}{n_{t}}} \boldsymbol{G}^{\boldsymbol{s}} \boldsymbol{x}^{s}+\sqrt{\frac{\rho_{i}}{n_{i}}} \boldsymbol{G}^{\boldsymbol{i}} \boldsymbol{x}^{i}+\boldsymbol{z} \tag{1} y=ntρs Gsxs+niρi Gixi+z(1)其中 G s \boldsymbol{G}^{\boldsymbol{s}} Gs是一个 n r × n t n_r \times n_t nr×nt的复矩阵,表示信号信道矩阵, G i \boldsymbol{G}^{\boldsymbol{i}} Gi n r × n i n_r \times n_i nr×ni的复矩阵,表示干扰信道矩阵; x s \boldsymbol{x}^{\boldsymbol{s}} xs x i \boldsymbol{x}^{\boldsymbol{i}} xi表示 n t n_t nt维及 n r n_r nr维的发射信号与干扰信号向量,都是零均值的高斯变量。发射信号功率限制为 Q = E [ x s x s † ] , Tr ⁡ { Q } = n t \boldsymbol{Q}=E\left[\boldsymbol{x}^{\boldsymbol{s}} \boldsymbol{x}^{\boldsymbol{s}^{\dagger}}\right] ,\operatorname{Tr}\{\boldsymbol{Q}\}=n_{t} Q=E[xsxs],Tr{Q}=nt

数学分析架构

一般架构

互信息生成函数有: g ( ν ) = ⟨ [ det ⁡ ( N + ρ i n i G i G i † + ρ s n t G s Q G s † ) ] − ν [ det ⁡ ( N + ρ i n i G i G i † ) ] − ν ⟩ = ⟨ e − ν I ⟩ = 1 − ν ⟨ I ⟩ + ν 2 2 ⟨ I 2 ⟩ + ⋯ (2) \begin{aligned} g(\nu) &=\left\langle\frac{\left[\operatorname{det}\left(N+\frac{\rho_{i}}{n_{i}} G^{i} G^{i^{\dagger}}+\frac{\rho_{s}}{n_{t}} G^{s} Q G^{s \dagger}\right)\right]^{-\nu}}{\left[\operatorname{det}\left(N+\frac{\rho_{i}}{n_{i}} G^{i} G^{i^{\dagger}}\right)\right]^{-\nu}}\right\rangle \\ &=\left\langle e^{-\nu I}\right\rangle \\ &=1-\nu\langle I\rangle+\frac{\nu^{2}}{2}\left\langle I^{2}\right\rangle+\cdots \end{aligned} \tag{2} g(ν)=[det(N+niρiGiGi)]ν[det(N+niρiGiGi+ntρsGsQGs)]ν=eνI=1νI+2ν2I2+(2)假设 g ( ν ) g(\nu) g(ν)至少在 ν = 0 \nu=0 ν=0时是解析的,则 l o g g ( ν ) \mathrm{log}g(\nu) logg(ν)可以表述为: log ⁡ g ( ν ) = − ν ⟨ I ⟩ + ∑ p = 2 ∞ ( − ν ) p p ! C p (3) \log g(\nu)=-\nu\langle I\rangle+\sum_{p=2}^{\infty} \frac{(-\nu)^{p}}{p !} \mathcal{C}_{p} \tag{3} logg(ν)=νI+p=2p!(ν)pCp(3)其中 C p \mathcal{C}_p Cp I I I p p p阶累计矩,例如 C 2 = Var ⁡ ( I ) = ⟨ ( I − ⟨ I ⟩ ) 2 ⟩ \mathcal{C}_{2}=\operatorname{Var}(I)=\left\langle(I-\langle I\rangle)^{2}\right\rangle C2=Var(I)=(II)2为方差, C 3 = S k ( I ) = ⟨ ( I − ⟨ I ⟩ ) 3 ⟩ \mathcal{C}_{3}=S k(I)=\left\langle(I-\langle I\rangle)^{3}\right\rangle C3=Sk(I)=(II)3为分布偏态。

AWGN噪声且无干扰

此时噪声矩阵为 N = I n r \boldsymbol{N}=\boldsymbol{I}_{n_{r}} N=Inr,则容量表达式为: g ( ν ) = ⟨ [ det ⁡ ( I n r + ρ s n t G s Q G s † ) ] − ν ⟩ (4) g(\nu)=\left\langle\left[\operatorname{det}\left(\boldsymbol{I}_{n_{r}}+\frac{\rho_{s}}{n_{t}} \boldsymbol{G}^{\boldsymbol{s}} \boldsymbol{Q} \boldsymbol{G}^{\boldsymbol{s} \dagger}\right)\right]^{-\nu}\right\rangle \tag{4} g(ν)=[det(Inr+ntρsGsQGs)]ν(4)
ν \nu ν为任意正整数,由Appendix I中Identity 1,上式可写为: g ( ν ) = ∫ D c X e − 1 2 Tr ⁡ { X † X } ⟨ e − ρ s 2 n t Tr ⁡ { X † G s Q G s † X } ⟩ (5) g(\nu)=\int D_{c} \boldsymbol{X} e^{-\frac{1}{2} \operatorname{Tr}\left\{\boldsymbol{X}^{\dagger} \boldsymbol{X}\right\}}\left\langle e^{-\frac{\rho_{s}}{2 n_{t}} \operatorname{Tr}\left\{\boldsymbol{X}^{\dagger} \boldsymbol{G}^{s} \boldsymbol{Q} \boldsymbol{G}^{\boldsymbol{s}\dagger} \boldsymbol{X}\right\}}\right\rangle \tag{5} g(ν)=DcXe21Tr{XX}e2ntρsTr{XGsQGsX}(5)其中 X \boldsymbol{X} X为复的 n r × ν n_r \times \nu nr×ν维矩阵。
上式中括号中项利用Identity 2可以被改写为: ⟨ e − ρ s 2 n t Tr ⁡ { X † G s Q G s † X } ⟩ = ∫ D c Y e − 1 2 Tr ⁡ Y † Y × ⟨ e − ρ S 4 n t Tr ⁡ { X † G s Q 1 / 2 Y − Y † Q 1 / 2 G s † X } ⟩ (6) \begin{array}{r} \left\langle e^{-\frac{\rho_{s}}{2 n_{t}} \operatorname{Tr}\left\{\boldsymbol{X}^{\dagger} \boldsymbol{G}^{s} \boldsymbol{Q G}^{\boldsymbol{s} \dagger} \boldsymbol{X}\right\}}\right\rangle=\int D_{c} \boldsymbol{Y} e^{-\frac{1}{2} \operatorname{Tr} \boldsymbol{Y}^{\dagger} \boldsymbol{Y}} \\ \times\left\langle e^{-\sqrt{\frac{\rho_{S}}{4 n_{t}}} \operatorname{Tr}\left\{\boldsymbol{X}^{\dagger} \boldsymbol{G}^{s} \boldsymbol{Q}^{1 / 2} \boldsymbol{Y}-\boldsymbol{Y}^{\dagger} \boldsymbol{Q}^{1 / 2} \boldsymbol{G}^{\boldsymbol{s} \dagger} \boldsymbol{X}\right\}}\right\rangle \end{array} \tag{6} e2ntρsTr{XGsQGsX}=DcYe21TrYY×e4ntρS Tr{XGsQ1/2YYQ1/2GsX}(6) g ( ν ) g(\nu) g(ν)可以写为: g ( ν ) = ∫ D c X D c Y ⋅ e − 1 2 Tr ⁡ { X † X + Y † Y + ρ s 2 n t Y † Q 1 / 2 T s Q 1 / 2 Y X † R s X } (7) \begin{aligned} g(\nu)=& \int D_{c} \boldsymbol{X} D_{c} \boldsymbol{Y} \\ & \cdot e^{-\frac{1}{2} \operatorname{Tr}\left\{\boldsymbol{X}^{\dagger} \boldsymbol{X}+\boldsymbol{Y}^{\dagger} \boldsymbol{Y}+\frac{\rho_{s}}{2 n_{t}} \boldsymbol{Y}^{\dagger} \boldsymbol{Q}^{1 / 2} \boldsymbol{T}^{s} \boldsymbol{Q}^{1 / 2} \boldsymbol{Y} \boldsymbol{X}^{\dagger} \boldsymbol{R}^{s} \boldsymbol{X}\right\}} \end{aligned} \tag{7} g(ν)=DcXDcYe21Tr{XX+YY+2ntρsYQ1/2TsQ1/2YXRsX}(7)将指数的最后一项用 X , Y \boldsymbol{X,Y} X,Y表示为二次型(利用Identity 3并引入 ν × ν \nu \times \nu ν×ν维矩阵 R 1 , T 1 \boldsymbol{R}_1,\boldsymbol{T}_1 R1,T1)则指数的最后一项可写为: exp ⁡ [ ρ s 2 n t Tr ⁡ { Y † Q 1 / 2 T s Q 1 / 2 Y X † R s X } ] = ∫ d μ ( T 1 , R 1 ) exp ⁡ [ Tr ⁡ { T 1 R 1 } − ρ s 4 n t × Tr ⁡ { T 1 Y † Q 1 / 2 T s Q 1 / 2 Y + X † R s X R 1 } ] (8) \begin{array}{l} \exp \left[\frac{\rho_{s}}{2 n_{t}} \operatorname{Tr}\left\{\boldsymbol{Y}^{\dagger} \boldsymbol{Q}^{1 / 2} \boldsymbol{T}^{s} \boldsymbol{Q}^{1 / 2} \boldsymbol{Y} \boldsymbol{X}^{\dagger} \boldsymbol{R}^{s} \boldsymbol{X}\right\}\right] \\ =\int d \mu\left(\boldsymbol{T}_{1}, \boldsymbol{R}_{1}\right) \exp \left[\operatorname{Tr}\left\{\boldsymbol{T}_{1} \boldsymbol{R}_{1}\right\}-\sqrt{\frac{\rho_{s}}{4 n_{t}}}\right. \\ \left.\times \operatorname{Tr}\left\{\boldsymbol{T}_{1} \boldsymbol{Y}^{\dagger} \boldsymbol{Q}^{1 / 2} \boldsymbol{T}^{s} \boldsymbol{Q}^{1 / 2} \boldsymbol{Y}+\boldsymbol{X}^{\dagger} \boldsymbol{R}^{s} \boldsymbol{X} \boldsymbol{R}_{1}\right\}\right] \end{array} \tag{8} exp[2ntρsTr{YQ1/2TsQ1/2YXRsX}]=dμ(T1,R1)exp[Tr{T1R1}4ntρs ×Tr{T1YQ1/2TsQ1/2Y+XRsXR1}](8)这种方法叫Hubbard–Stratonovich变换,在“Distributions of singular values for some random matrices,”中也有应用,该方法处理上面这种指数矩阵解耦非常有用。
上述过程处理完成后, g ( ν ) g(\nu) g(ν)表述如下: g ( ν ) = ∫ d μ ( T 1 , R 1 ) e − S (9) g(\nu)=\int d \mu\left(\boldsymbol{T}_{1}, \boldsymbol{R}_{1}\right) e^{-\mathcal{S}} \tag{9} g(ν)=dμ(T1,R1)eS(9)其中 S = log ⁡ det ⁡ ( I n r ⊗ I ν + ρ s n t R s ⊗ R 1 ) + log ⁡ det ⁡ ( I n t ⊗ I ν + ρ s n t Q 1 / 2 T s Q 1 / 2 ⊗ T 1 ) − Tr ⁡ { T 1 R 1 } . (10) \begin{aligned} \mathcal{S}=& \log \operatorname{det}\left(\boldsymbol{I}_{n_{r}} \otimes \boldsymbol{I}_{\nu}+\sqrt{\frac{\rho_{s}}{n_{t}}} \boldsymbol{R}^{s} \otimes \boldsymbol{R}_{1}\right) \\ &+\log \operatorname{det}\left(\boldsymbol{I}_{n_{t}} \otimes \boldsymbol{I}_{\nu}+\sqrt{\frac{\rho_{s}}{n_{t}}} \boldsymbol{Q}^{1 / 2} \boldsymbol{T}^{s} \boldsymbol{Q}^{1 / 2} \otimes \boldsymbol{T}_{1}\right) \\ &-\operatorname{Tr}\left\{\boldsymbol{T}_{1} \boldsymbol{R}_{1}\right\} . \end{aligned} \tag{10} S=logdet(InrIν+ntρs RsR1)+logdet(IntIν+ntρs Q1/2TsQ1/2T1)Tr{T1R1}.(10)到此处,后面可以用鞍点逼近来分析。

鞍点逼近法是一种获得复空间中快变函数积分系统展开式的方法。这种方法包括变形积分轮廓,使其通过一个(或多个)点,其中被积函数的指数是平稳的,即指数对所有积分变量的导数消失的点[24]。因此,沿最陡下降路径的点周围的积分渐进地携带积分的最高权重。通常,当被积函数的指数较大时,这种近似是有效的,在这种情况下,这种方法也被称为拉普拉斯方法,或Varadhan定理。

由于鞍点近似解决的是复平面积分 I ( λ ) = ∫ C d z e λ g ( z ) I(\lambda)=\int_{C} d z e^{\lambda g(z)} I(λ)=Cdzeλg(z) λ \lambda λ取大值时的近似问题。其中 g ( z ) g(z) g(z)应该是 z z z的解析函数。所以到此上述部分都是在将互信息凑成可以用鞍点分析的形式。

鞍点分析

( 7 ) (7) (7)式中 T 1 \boldsymbol{T}_1 T1 R 1 \boldsymbol{R}_1 R1在鞍点处的形式为 t 1 n t I ν t_{1} \sqrt{n_{t}} \boldsymbol{I}_{\nu} t1nt Iν r 1 n t I ν r_{1} \sqrt{n_{t}} \boldsymbol{I}_{\nu} r1nt Iν,若将除 n t \sqrt{n_{t}} nt 以外的项写入方差,则逼近的每一步 T 1 \boldsymbol{T}_1 T1 R 1 \boldsymbol{R}_1 R1可写为 T 1 = t 1 n t I ν + δ T 1 R 1 = r 1 n t I ν + δ R 1 (11) \begin{array}{l} \boldsymbol{T}_{1}=t_{1} \sqrt{n_{t}} \boldsymbol{I}_{\nu}+\boldsymbol{\delta} \boldsymbol{T}_{1} \\ \boldsymbol{R}_{1}=r_{1} \sqrt{n_{t}} \boldsymbol{I}_{\nu}+\boldsymbol{\delta} \boldsymbol{R}_{1} \end{array} \tag{11} T1=t1nt Iν+δT1R1=r1nt Iν+δR1(11) ( 8 ) (8) (8)式中 S \mathcal{S} S可以用方差矩阵 δ T 1 , δ R 1 \boldsymbol{\delta} \boldsymbol{T}_{1},\boldsymbol{\delta} \boldsymbol{R}_{1} δT1,δR1的泰勒展开式展开: S = S 0 + S 1 + S 2 + S 3 + S 4 ⋯ (12) \mathcal{S}=\mathcal{S}_{0}+\mathcal{S}_{1}+\mathcal{S}_{2}+\mathcal{S}_{3}+\mathcal{S}_{4} \cdots \tag{12} S=S0+S1+S2+S3+S4(12)其中 S p \mathcal{S}_p Sp δ T 1 , δ R 1 \boldsymbol{\delta} \boldsymbol{T}_{1},\boldsymbol{\delta} \boldsymbol{R}_{1} δT1,δR1泰勒展开第 p p p项的函数: S 0 = ν [ log ⁡ det ⁡ ( I n t + ρ s Q T s t 1 ) + log ⁡ det ⁡ ( I n r + ρ s R s r 1 ) − n t r 1 t 1 ] = ν Γ s (13) \begin{aligned} \mathcal{S}_{0}=& \nu\left[\log \operatorname{det}\left(\boldsymbol{I}_{n_{t}}+\sqrt{\rho_{s}} \boldsymbol{Q} \boldsymbol{T}^{s} t_{1}\right)\right.\\ &\left.+\log \operatorname{det}\left(\boldsymbol{I}_{n_{r}}+\sqrt{\rho_{s}} \boldsymbol{R}^{s} r_{1}\right)-n_{t} r_{1} t_{1}\right] \\ =& \nu \Gamma_{s} \end{aligned} \tag{13} S0==ν[logdet(Int+ρs QTst1)+logdet(Inr+ρs Rsr1)ntr1t1]νΓs(13) S 1 = ( M r , 1 − n t t 1 ) Tr ⁡ { δ R 1 } + ( M t , 1 − n t r 1 ) Tr ⁡ { δ T 1 } (14) \mathcal{S}_{1}=\left(M_{r, 1}-\sqrt{n_{t}} t_{1}\right) \operatorname{Tr}\left\{\boldsymbol{\delta} \boldsymbol{R}_{1}\right\}+\left(M_{t, 1}-\sqrt{n_{t}} r_{1}\right) \operatorname{Tr}\left\{\boldsymbol{\delta} \boldsymbol{T}_{1}\right\} \tag{14} S1=(Mr,1nt t1)Tr{δR1}+(Mt,1nt r1)Tr{δT1}(14) S 2 = − 1 2 Tr ⁡ { M r , 2 ( δ R 1 ) 2 + M t , 2 ( δ T 1 ) 2 + 2 δ R 1 δ T 1 } = 1 2 Tr ⁡ { [ δ R 1 δ T 1 ] T V [ δ R 1 δ T 1 ] } (15) \begin{aligned} \mathcal{S}_{2} &=-\frac{1}{2} \operatorname{Tr}\left\{M_{r, 2}\left(\boldsymbol{\delta} \boldsymbol{R}_{1}\right)^{2}+M_{t, 2}\left(\boldsymbol{\delta} \boldsymbol{T}_{1}\right)^{2}+2 \delta \boldsymbol{R}_{1} \boldsymbol{\delta} \boldsymbol{T}_{1}\right\} \\ &=\frac{1}{2} \operatorname{Tr}\left\{\left[\begin{array}{l} \boldsymbol{\delta} \boldsymbol{R}_{1} \\ \boldsymbol{\delta} \boldsymbol{T}_{1} \end{array}\right]^{T} \boldsymbol{V}\left[\begin{array}{l} \boldsymbol{\delta} \boldsymbol{R}_{1} \\ \boldsymbol{\delta} \boldsymbol{T}_{1} \end{array}\right]\right\} \end{aligned} \tag{15} S2=21Tr{Mr,2(δR1)2+Mt,2(δT1)2+2δR1δT1}=21Tr{[δR1δT1]TV[δR1δT1]}(15)其中Hessian矩阵 V \boldsymbol{V} V为: V = [ − M r , 2 − 1 − 1 − M t , 2 ] (16) \boldsymbol{V}=\left[\begin{array}{cc} -M_{r, 2} & -1 \\ -1 & -M_{t, 2} \end{array}\right] \tag{16} V=[Mr,211Mt,2](16) p > 2 p >2 p>2,则 S p \mathcal{S}_p Sp可简化为: S p = ( − 1 ) p p Tr ⁡ { M r , p ( δ R 1 ) p + M t , p ( δ T 1 ) p } (17) \mathcal{S}_{p}=\frac{(-1)^{p}}{p} \operatorname{Tr}\left\{M_{r, p}\left(\boldsymbol{\delta} \boldsymbol{R}_{1}\right)^{p}+M_{t, p}\left(\boldsymbol{\delta} \boldsymbol{T}_{1}\right)^{p}\right\} \tag{17} Sp=p(1)pTr{Mr,p(δR1)p+Mt,p(δT1)p}(17)其中 M t , p = ( ρ s n t ) p / 2 Tr ⁡ { [ Q T s ( I n t + ρ s t 1 Q T s ) − 1 ] p } M r , p = ( ρ s n t ) p / 2 Tr ⁡ { [ R s ( I n r + ρ s r 1 R s ) − 1 ] p } (18) \begin{array}{l} M_{t, p}=\left(\frac{\rho_{s}}{n_{t}}\right)^{p / 2} \operatorname{Tr}\left\{\left[\boldsymbol{Q} \boldsymbol{T}^{s}\left(\boldsymbol{I}_{n_{t}}+\sqrt{\rho_{s}} t_{1} \boldsymbol{Q} \boldsymbol{T}^{s}\right)^{-1}\right]^{p}\right\} \\ M_{r, p}=\left(\frac{\rho_{s}}{n_{t}}\right)^{p / 2} \operatorname{Tr}\left\{\left[\boldsymbol{R}^{s}\left(\boldsymbol{I}_{n_{r}}+\sqrt{\rho_{s}} r_{1} \boldsymbol{R}^{s}\right)^{-1}\right]^{p}\right\} \end{array} \tag{18} Mt,p=(ntρs)p/2Tr{[QTs(Int+ρs t1QTs)1]p}Mr,p=(ntρs)p/2Tr{[Rs(Inr+ρs r1Rs)1]p}(18)可以看到 ( 8 ) (8) (8)式中两个 Q 1 / 2 \boldsymbol{Q}^{1/2} Q1/2可以合为 Q \boldsymbol{Q} Q。则 ( 7 ) (7) (7)式的鞍点解,即 t 1 , r 1 t_1,r_1 t1,r1可由“针对变换的 T 1 , R 1 \boldsymbol{T}_1,\boldsymbol{R}_1 T1,R1 S \mathcal{S} S不变”得到,则 S 1 = 0 \mathcal{S}_1=0 S1=0,这类似于为了求最大值或最小值将一阶导设为0,则有: r 1 = 1 n t M t , 1 = ρ s n t Tr ⁡ { Q T s [ I n t + ρ s t 1 Q T s ] − 1 } (19) r_{1} =\frac{1}{n_{t}} M_{t, 1}=\frac{\sqrt{\rho_{s}}}{n_{t}} \operatorname{Tr}\left\{\boldsymbol{Q} \boldsymbol{T}^{s}\left[\boldsymbol{I}_{n_{t}}+\sqrt{\rho_{s}} t_{1} \boldsymbol{Q} \boldsymbol{T}^{s}\right]^{-1}\right\} \tag{19} r1=nt1Mt,1=ntρs Tr{QTs[Int+ρs t1QTs]1}(19) t 1 = 1 n t M r , 1 = ρ s n t Tr ⁡ { R s [ I n r + ρ s R s r 1 ] − 1 } (20) t_{1} =\frac{1}{n_{t}} M_{r, 1}=\frac{\sqrt{\rho_{s}}}{n_{t}} \operatorname{Tr}\left\{\boldsymbol{R}^{s}\left[\boldsymbol{I}_{n_{r}}+\sqrt{\rho_{s}} \boldsymbol{R}^{s} r_{1}\right]^{-1}\right\} \tag{20} t1=nt1Mr,1=ntρs Tr{Rs[Inr+ρs Rsr1]1}(20) ( 17 ) ( 18 ) (17)(18) (17)(18)的解在正实数 t 1 , r 1 t_1,r_1 t1,r1的基础上最大化 Γ s \Gamma_{s} Γs
控制该逼近过程的是小参数 n 1 / 2 n^{1/2} n1/2,所以鞍点逼近在大规模MIMO中更加精确。

平均互信息

g ( ν ) g(\nu) g(ν)的前几项可得: g ( ν ) ≈ exp ⁡ ( − S 0 ) = exp ⁡ ( − ν Γ s ) g(\nu) \approx \exp \left(-\mathcal{S}_{0}\right)=\exp \left(-\nu \Gamma_{s}\right) g(ν)exp(S0)=exp(νΓs)我们可以看到 ⟨ I ⟩ \langle I\rangle I的主成分项为 Γ s \Gamma_{s} Γs,且有 ⟨ I ⟩ = O ( n ) \langle I\rangle=\mathcal{O}(n) I=O(n)

互信息的方差

为了得到 ( 10 ) (10) (10)式中 l o g g ( ν ) \mathrm{log}g(\nu) logg(ν) O ( v 2 ) \mathcal{O}(v^2) O(v2)项,我们需将下一个非零项包括进来,即 S 2 \mathcal{S}_2 S2。因此我们仅忽略更高项 S p , p > 2 \mathcal{S}_p,p>2 Sp,p>2
基于 ( 11 ) (11) (11)式的均值方差表述, g ( ν ) g(\nu) g(ν)可以被表述为: g ( ν ) = e − S 0 ∫ d μ ( δ T 1 , δ R 1 ) e − S 2 = e − S 0 ∫ d μ ( δ T 1 , δ R 1 ) × exp ⁡ ( − 1 2 ∑ a , b = 1 ν [ δ T 1 , a b δ R 1 , a b ] V [ δ T 1 , b a δ R 1 , b a ] T ) (21) \begin{aligned} g(\nu)=& e^{-\mathcal{S}_{0}} \int d \mu\left(\boldsymbol{\delta} \boldsymbol{T}_{1}, \boldsymbol{\delta} \boldsymbol{R}_{1}\right) e^{-\mathcal{S}_{2}} \\ =& e^{-\mathcal{S}_{0}} \int d \mu\left(\boldsymbol{\delta} \boldsymbol{T}_{1}, \boldsymbol{\delta} \boldsymbol{R}_{1}\right) \\ & \times \exp \left(-\frac{1}{2} \sum_{a, b=1}^{\nu}\left[\delta T_{1, a b} \delta R_{1, a b}\right] \boldsymbol{V}\left[\delta T_{1, b a} \delta R_{1, b a}\right]^{T}\right) \end{aligned} \tag{21} g(ν)==eS0dμ(δT1,δR1)eS2eS0dμ(δT1,δR1)×exp21a,b=1ν[δT1,abδR1,ab]V[δT1,baδR1,ba]T(21)为了将 ( 21 ) (21) (21)中方程的指数项对角化,利用酉变换将 δ T 1 , δ R 1 \boldsymbol{\delta} \boldsymbol{T}_{1},\boldsymbol{\delta} \boldsymbol{R}_{1} δT1,δR1改为 ν × ν \nu \times \nu ν×ν维矩阵 W 1 , W 2 \boldsymbol{W}_1,\boldsymbol{W}_2 W1,W2,如下: [ W 1 , a b W 2 , a b ] T = U [ δ T 1 , a b δ R 1 , a b ] T \left[W_{1, a b} W_{2, a b}\right]^{T}=\boldsymbol{U}\left[\delta T_{1, a b} \delta R_{1, a b}\right]^{T} [W1,abW2,ab]T=U[δT1,abδR1,ab]T U \boldsymbol{U} U是一个满足 U V U T = diag ⁡ ( v ) \boldsymbol{U} \boldsymbol{V} \boldsymbol{U}^{\boldsymbol{T}}=\operatorname{diag}(\boldsymbol{v}) UVUT=diag(v)的正交阵,其中 v = [ v 1   v 2 ] T \boldsymbol{v}=[v_1 \space v_2]^T v=[v1 v2]T V \boldsymbol{V} V的特征值,则 ( 21 ) (21) (21)式可以写为 g ( ν ) = e − S 0 ∫ d μ ( W 1 , W 2 ) × exp ⁡ ( − 1 2 ∑ a , b = 1 ν [ v 1 W 1 , a b W 1 , b a + v 2 W 2 , a b W 2 , b a ] ) (22) \begin{array}{l} g(\nu)=e^{-\mathcal{S}_{0}} \int d \mu\left(\boldsymbol{W}_{1}, \boldsymbol{W}_{2}\right) \\ \times \exp \left(-\frac{1}{2} \sum_{a, b=1}^{\nu}\left[v_{1} W_{1, a b} W_{1, b a}+v_{2} W_{2, a b} W_{2, b a}\right]\right) \end{array} \tag{22} g(ν)=eS0dμ(W1,W2)×exp(21a,b=1ν[v1W1,abW1,ba+v2W2,abW2,ba])(22)由于 M t , 2 , M r , 2 < 1 M_{t, 2}, M_{r, 2}<1 Mt,2,Mr,2<1 v 1 , v 2 v_1,v_2 v1,v2反号,因此为了保证 M 1 , a b M_{1,ab} M1,ab按照最速下降路径逼近,我们令 W 1 = W 1 † \boldsymbol{W}_{1}=\boldsymbol{W}_{1}^{\dagger} W1=W1,同时 W 2 = i W 2 † \boldsymbol{W}_{2}=i \boldsymbol{W}_{2}^{\dagger} W2=iW2,则 ( 22 ) (22) (22)式进一步转化为 g ( ν ) = e − S 0 ∏ k = 1 2 { ∏ a = 1 ν ∫ d W k , a a 2 π ∏ b > a ν ∬ d Re ⁡ W k , a b d Im ⁡ W k , a b 2 π × exp ⁡ [ − 1 2 ∣ v k ∣ Tr ⁡ { W k † W k } ] } = e − S 0 ∣ v 1 v 2 ∣ − ν 2 2 = e − S 0 ∣ det ⁡ V ∣ − ν 2 2 (23) \begin{aligned} g(\nu)=& e^{-\mathcal{S}_{0}} \prod_{k=1}^{2}\left\{\prod_{a=1}^{\nu} \int \frac{d W_{k, a a}}{\sqrt{2 \pi}} \prod_{b>a}^{\nu} \iint \frac{d \operatorname{Re} W_{k, a b} d \operatorname{Im} W_{k, a b}}{2 \pi}\right.\\ &\left.\times \exp \left[-\frac{1}{2}\left|v_{k}\right| \operatorname{Tr}\left\{\boldsymbol{W}_{k}^{\dagger} \boldsymbol{W}_{k}\right\}\right]\right\} \\ =& e^{-\mathcal{S}_{0}}\left|v_{1} v_{2}\right|^{-\frac{\nu^{2}}{2}}=e^{-\mathcal{S}_{0}}|\operatorname{det} \boldsymbol{V}|^{-\frac{\nu^{2}}{2}} \end{aligned} \tag{23} g(ν)==eS0k=12{a=1ν2π dWk,aab>aν2πdReWk,abdImWk,ab×exp[21vkTr{WkWk}]}eS0v1v22ν2=eS0detV2ν2(23) ( 3 ) (3) (3)式与 ( 23 ) (23) (23)式逐项比较,对应上 g ( ν ) g(\nu) g(ν) ν \nu ν阶泰勒展开式,则方差中的主成分为: ⟨ I 2 ⟩ − ⟨ I ⟩ 2 = C 2 = − log ⁡ ∣ det ⁡ V ∣ + ⋯ = − log ⁡ ( 1 − M r , 2 M t , 2 ) + ⋯ (24) \begin{aligned} \left\langle I^{2}\right\rangle-\langle I\rangle^{2} &=\mathcal{C}_{2}=-\log |\operatorname{det} \boldsymbol{V}|+\cdots \\ &=-\log \left(1-M_{r, 2} M_{t, 2}\right)+\cdots \end{aligned} \tag{24} I2I2=C2=logdetV+=log(1Mr,2Mt,2)+(24)因为 M r , 2 , M t , 2 = O ( 1 ) M_{r, 2}, M_{t, 2}=\mathcal{O}(1) Mr,2,Mt,2=O(1),则方差在 n − 1 / 2 n^{-1/2} n1/2的扩展上也是 O ( 1 ) \mathcal{O}(1) O(1)。同时我们发现在 S 2 \mathcal{S}_2 S2中没有哪一项是 ν \nu ν的函数。因此没有 O ( 1 ) \mathcal{O}(1) O(1)中的哪一项在 ⟨ I ⟩ \left\langle I \right\rangle I中出现,因此有 ⟨ I ⟩ = Γ s + o ( 1 ) \langle I\rangle=\Gamma_{s}+o(1) I=Γs+o(1)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值