MIMO I: spatial multiplexing and channel modeling
7.1 MIMO信道的空间复用能力
时变信道描述为下:在矢量高斯信道假设下,信道矩阵有以下的SVD奇异值分解:U与V均为单位旋转矩阵,
Λ
\Lambda
Λ为特征值的对角阵。
更为简洁的表达形式如下:整个系统的模型如下,形成了一个等效的平行高斯信道:信道容量如下:P为利用注水原理进行的功率分配。
实际的信道模型如下图:接下来,分为高SNR和低SNR两种情况进行信道容量分析。
高SNR下:注水原理,最优解为均匀分配功率由该式子可以看到MIMO提供了k个空间自由度。k为非零的特征值个数。若信道矩阵H为满秩的,则提供的空间自由度为发射或接收天线数的小值。
在低SNR下:其仅提供
λ
\lambda
λ平方的功率增益。因此低信噪比下重要的是有多少的功率传输从发射到接收。
- 定义一个参数:信道矩阵的自由数其越接近于1,则为well-conditioned channel。
7.2 MIMO信道的物理模型
7.2.1 SIMO信道模型
首先定义两个重要的参数:为归一化的天线间距,由载波长度归一化。为接收天线的入射角。
假设SIMO只有LOS径,信道如下:系统容量如下:(在maximal ratio combining下)SIMO只提供了power gain,而没有自由度的增益。
同理对于MISO,也仅提供nt的power gain。
总结:仅有LOS情况下,MIMO只提供power gain而无自由度增益。
7.2.4 如何获得自由度增益
考虑仅两个发射机的情况:
只要接收天线的入射角满足:那么信道矩阵的秩便为2,即可提供自由度增益。
接下来讨论Resolvability in the angular domain
定义一个重要函数:发射与接收天线相位旋转矩阵的乘积这三者基本上为等价的关系。
信道的自由数可由cos
θ
\theta
θ表达,假定两条路径的信道增益相同cos
θ
\theta
θ等于1时,信道为ill-conditioned。
角度的分辨力为1/Lr,Lr为接收阵列的归一化长度Lr=nr
Δ
\Delta
Δr
Δ
\Delta
Δr<1/2则仅有一个主瓣,若
Δ
\Delta
Δr>1/2则有多个主瓣。
Lr越大,则波束越集中。
7.2.5 Line-of-sight plus one reflected path
信道模型为:
若二者的秩均为2,则信道矩阵well-conditioned
7.3 MIMO衰落信道模型
MIMO多径信道如下:
7.3.3 信号的角域表示
角域中的正交基为每个基有一对或多对宽度小于2/Lr的主瓣与其它的小旁瓣。分辨力为1/Lr
天线的放置分为三种情况:1.
Δ
\Delta
Δr>1/2 2.
Δ
\Delta
Δr=1/2 3.
Δ
\Delta
Δr<1/2
Angular domain transformation as DFT
Ut是以基向量作为列向量。角域转换为:
经过以下变换后:信道矩阵如下:
7.3.6 自由度和分集
影响因素:1.多路环境中的散射量和反射量 2.Lt与Lr的长度。若L较小,分辨率差,那么多条多径可能会lump into one bin。
角度扩展越大,即天线阵列长度越大,则自由度越大。 角度扩展与相干距离互为倒数。
载波对自由度的影响:1.Lt与Lr是对载波长度的归一化,载波越小,则Lt与Lr越大。 2.而载波越小,角度扩展越小。因为衰减越大,越像镜面反射。 因此自由度随载波长度并非一个单调函数。
给定天线阵列长度Lt与Lr:
- sparsely allocated: Δ \Delta Δr>1/2 降低自由度,在时域而言,信道矩阵各个entry相对独立
- densely allocated: Δ \Delta Δr<1/2 有伪基向量,相对于 Δ \Delta Δr=1/2并没有增加自由度,对应于时域信道矩阵,各个entry更加相关。
对于实际的入射方向为cos θ \theta θ是在[-1,1],那么对应于时域上便为带限信号[-W,W]