线性规划问题(LP问题)

线性规划问题

基本特征(什么是LP问题)

minimize ⁡ c T x + d  subject to  G x ⪯ h A x = b \begin{array}{ll} \operatorname{minimize} & c^{T} x+d \\ \text { subject to } & G x \preceq h \\ & A x=b \end{array} minimize subject to cTx+dGxhAx=b
一言以蔽之,目标函数和约束条件都是仿射函数。

几何意义(物理意义理解)

在这里插入图片描述
在多面体上,沿 − c -c c为法线方向,找到多面体 P \mathcal{P} P的支撑超平面。

两种特殊形式(LP问题中被研究较透彻的两个方向)

标准形式的LP问题

不等式约束只有非负约束
minimize ⁡ c T x  subject to  A x = b x ⪰ 0 \begin{array}{ll} \operatorname{minimize} & c^{T} x \\ \text { subject to } & A x=b \\ & x \succeq 0 \end{array} minimize subject to cTxAx=bx0

一般LP问题如何转化为标准LP问题

第一步:引入松弛变量 s s s,变不等式约束为等式约束
minimize ⁡ c T x + d  subject to  G x + s = h A x = b s ⪰ 0 \begin{array}{ll} \operatorname{minimize} & c^{T} x+d \\ \text { subject to } & G x+s=h \\ & A x=b \\ & s \succeq 0 \end{array} minimize subject to cTx+dGx+s=hAx=bs0
然而标准形式中的不等式约束是对优化变量来说的,如果到此为止,则只是对松弛变量。所以
第二步:用两个有非负约束的优化变量 x = x + − x − x=x^{+}-x^{-} x=x+x替代原优化变量 x x x,则原优化问题变为:
minimize ⁡ c T x + − c T x − + d  subject to  G x + − G x − + s = h A x + − A x − = b x + ⪰ 0 , x − ⪰ 0 , s ⪰ 0 \begin{array}{ll} \operatorname{minimize} & c^{T} x^{+}-c^{T} x^{-}+d \\ \text { subject to } & G x^{+}-G x^{-}+s=h \\ & A x^{+}-A x^{-}=b \\ & x^{+} \succeq 0, \quad x^{-} \succeq 0, \quad s \succeq 0 \end{array} minimize subject to cTx+cTx+dGx+Gx+s=hAx+Ax=bx+0,x0,s0
最后写成标准形式:
min ⁡ [ c T − c T 0 T ] [ x + x s ]  s.t.  [ x + x − s ] ⪰ 0 , [ G − G I ] [ x + x − s ] = h \begin{aligned} &\min \quad\left[\begin{array}{lll} \mathbf{c}^{T} & -\mathbf{c}^{T} & 0^{T} \end{array}\right]\left[\begin{array}{c} \mathbf{x}_{+} \\ \mathbf{x}_{\mathbf{s}} \end{array}\right]\\ &\text { s.t. }\left[\begin{array}{c} \mathrm{x}_{+} \\ \mathrm{x}_{-} \\ \mathrm{s} \end{array}\right] \succeq 0, \quad\left[\begin{array}{lll} \mathrm{G} & -\mathrm{G} & \mathbf{I} \end{array}\right]\left[\begin{array}{c} \mathrm{x}_{+} \\ \mathrm{x}_{-} \\ \mathrm{s} \end{array}\right]=\mathrm{h} \end{aligned} min[cTcT0T][x+xs] s.t. x+xs0,[GGI]x+xs=h

不等式形式的LP问题

即没有等式约束
minimize ⁡ c T x  subject to  A x ⪯ b \begin{array}{ll} \operatorname{minimize} & c^{T} x \\ \text { subject to } & A x \preceq b \end{array} minimize subject to cTxAxb

例子

多面体的Chebyshev中心

在多面体中寻找最大的欧式球,多面体表述:
P = { x ∈ R n ∣ a i T x ≤ b i , i = 1 , … , m } \mathcal{P}=\left\{x \in \mathbf{R}^{n} \mid a_{i}^{T} x \leq b_{i}, i=1, \ldots, m\right\} P={xRnaiTxbi,i=1,,m}
欧式球表述:
B = { x c + u ∣ ∥ u ∥ 2 ≤ r } \mathcal{B}=\left\{x_{c}+u \mid\|u\|_{2} \leq r\right\} B={xc+uu2r}
其中 x c x_{c} xc为球心,则欧式球在多面体中表述为:
a i T ( x c + u ) ≤ b i a_{i}^{T}\left(x_{c}+u\right) \leq b_{i} aiT(xc+u)bi
其中左式可以继续展开得到欧式球中满足不等式约束的上限:
a i T ( x c + u ) = a i T x c + a i T u ≤ a i T x c + ∣ ∣ a i ∣ ∣ 2 ∣ ∣ u ∣ ∣ 2 ≤ a i T x c + ∣ ∣ a i ∣ ∣ 2 r \begin{aligned} a_{i}^{T}\left(x_{c}+u\right)&=a_{i}^{T}x_{c}+a_{i}^{T}u \\ &\leq a_{i}^{T}x_{c}+||a_{i}||_{2}||u||_{2} \\ &\leq a_{i}^{T}x_{c}+||a_{i}||_{2}r \end{aligned} aiT(xc+u)=aiTxc+aiTuaiTxc+ai2u2aiTxc+ai2r
所以优化问题为:
 maximize  r  subject to  a i T x c + r ∥ a i ∥ 2 ≤ b i , i = 1 , … , m \begin{aligned} &\text { maximize } r\\ &\text { subject to } \quad a_{i}^{T} x_{c}+r\left\|a_{i}\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m \end{aligned}  maximize r subject to aiTxc+rai2bi,i=1,,m

分片线性最小化

对于无约束分片线性凸函数问题:
f ( x ) = max ⁡ i = 1 , … , m ( a i T x + b i ) f(x)=\max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right) f(x)=i=1,,mmax(aiTx+bi)
可以转化为LP问题。
首先改写为上境图形式:
 minimize  t  subject to  max ⁡ i = 1 , … , m ( a i T x + b i ) ≤ t \begin{aligned} &\text { minimize } t\\ &\text { subject to } \max _{i=1, \ldots, m}\left(a_{i}^{T} x+b_{i}\right) \leq t \end{aligned}  minimize t subject to i=1,,mmax(aiTx+bi)t
再将约束条件拆开为多个不等式约束
 minimize  t  subject to  ( a i T x + b i ) ≤ t \begin{aligned} &\text { minimize } t\\ &\text { subject to } \left(a_{i}^{T} x+b_{i}\right) \leq t \end{aligned}  minimize t subject to (aiTx+bi)t

线性分式规划

minimize ⁡ f 0 ( x ) = c T x + d e T x + f  subject to  G x ⪯ h A x = b \begin{array}{ll} \operatorname{minimize} & f_{0}(x)=\frac{c^{T} x+d}{e^{T} x+f} \\ \text { subject to } & G x \preceq h \\ & A x=b \end{array} minimize subject to f0(x)=eTx+fcTx+dGxhAx=b
定义域为: dom ⁡ f 0 = { x ∣ e T x + f > 0 } \operatorname{dom} f_{0}=\left\{x \mid e^{T} x+f>0\right\} domf0={xeTx+f>0}
该问题为拟线性问题,可以转化为LP问题:
minimize ⁡ c T y + d z  subject to  G y − h z ⪯ 0 A y − b z = 0 e T y + f z = 1 z ≥ 0 \begin{array}{ll} \operatorname{minimize} & c^{T} y+d z \\ \text { subject to } & G y-h z \preceq 0 \\ & A y-b z=0 \\ & e^{T} y+f z=1 \\ & z \geq 0 \end{array} minimize subject to cTy+dzGyhz0Aybz=0eTy+fz=1z0
优化变量为 y y y z z z
当原问题有最优解 x x x,LP问题最优解为:
y = x e T x + f , z = 1 e T x + f y=\frac{x}{e^{T} x+f}, \quad z=\frac{1}{e^{T} x+f} y=eTx+fx,z=eTx+f1
当LP最优解为 ( y , z ) \left(y,z \right) (y,z),则有两种情况:
1.如果 z ≠ 0 z\neq0 z=0 x = y z x=\frac{y}{z} x=zy
2.如果 z = 0 z=0 z=0,且有一个最优点 x 0 x_{0} x0,则最优解可表示为 for all  t > 0 , x = x 0 + t y \text{for all }t>0,x=x_{0}+ty for all t>0,x=x0+ty,此时LP问题的解是线性分式规划最优解的上确界。

广义线性分式规划

f 0 ( x ) = max ⁡ i = 1 , … , r c i T x + d i e i T x + f i , dom ⁡ f 0 = { x ∣ e i T x + f i > 0 , i = 1 , … , r } f_{0}(x)=\max _{i=1, \ldots, r} \frac{c_{i}^{T} x+d_{i}}{e_{i}^{T} x+f_{i}}, \quad \operatorname{dom} f_{0}=\left\{x \mid e_{i}^{T} x+f_{i}>0, i=1, \ldots, r\right\} f0(x)=i=1,,rmaxeiTx+ficiTx+di,domf0={xeiTx+fi>0,i=1,,r}

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值