一、引言
人工智能(Artificial Intelligence, AI)技术的迅猛发展,正深刻影响着各行各业,包括历史悠久且独具特色的中医药领域。AI与中医在思维模式上的某些共通之处,预示着两者结合的巨大潜力。本文旨在全面探讨AI技术在中医药研究中的应用,特别是在不同应用场景下两者的深度融合,旨在为未来的探索提供参考,加速AI在中医学领域的普及与实践。
二、中医与AI技术的共通性
中医是一门历史悠久、文化底蕴深厚的医学体系,它在古代朴素唯物论和自然辩证法的指导下,通过长期实践逐步发展成熟。中医药在维护人类健康方面具有巨大的潜力和价值。为了更有效地传承和发展中医药的优势,结合现代高科技手段解决发展中的难题,AI技术成为了一个不可忽视的新领域。AI是一门综合性科学,融合了系统论、控制论、信息论、心理学、语言学、数理逻辑等多个学科,具有全面性的特点。《黄帝内经》中提到的“内外相应”的中医整体观与AI大数据的全样本理念非常相似,都强调以整体为中心,注重开放性、动态性、经验性和预测性。中医强调个体差异的辨证施治,AI则能通过互联网整合多种信息和系统,形成开放、无限的动态大数据,将复杂信息智能化、个性化,与中医的辨证施治理念相契合。
三、人工智能在中医药领域的应用
3.1 “治未病”与人工智能
“治未病”是中医理论中的一个重要概念,起源于西周时期,并在《黄帝内经》中得到发展。《素问·四气调神大论》中提到:“圣人不治已病治未病,不治已乱治未乱。”这一理念强调预防为主,包括“未病先防”、“欲病救萌”、“既病防变”和“瘥后防复”等内容,凝聚了古代养生和健康实践的智慧。
利用AI技术进行健康状态的检测、干预和评估,是“治未病”理念在现代发展中的重要体现。基于人体健康数据的采集,AI技术能够实现“治未病”理念的广泛实施。研究表明,通过AI获取和分析人体状态信息,建立关键技术模型,可以深入探索“治未病”的AI健康管理模式,构建智能化的中医健康管理系统,全面把握人体健康状态的共性和个性。也有研究提出以“体质辨识”为导向,以“证素辨证”为核心,基于宏观、中观和微观三个层面,运用数据挖掘和信息处理技术,实现“健康状态”的识别,这仍然是AI在“治未病”领域的一个重要研究方向。
随着AI技术、算法和模型的不断进步,治未病的智能化进程不断取得突破。未来,AI技术有望通过介入基因检测预防疾病,解决现代医学难以攻克的问题,为中医治未病领域带来更多的可能性。
3.2 AI在中医临床辨证中的应用
“证”是中医特有的诊断概念,辨证是指通过望、闻、问、切四种方法,对患者的症状和体征进行综合分析,以确定病因、病性、病位和邪正关系等关键信息。传统辨证方法受到医生主观判断和患者个体差异的影响,导致中医辨证存在一定的不确定性和模糊性。然而,AI算法的发展使得对中医临床大数据的分析成为可能,通过模拟“望闻问切”的传统方法,AI技术能够提取和转换隐性知识,有助于总结临床经验,形成标准化的中医诊疗规范。
《素问·阴阳应象大论》中提到:“善诊者,察色按脉,先别阴阳,审清浊而知部分,视喘息听声音而知所苦。”望闻问切不仅是中医辨证论治的基础,也是中医诊疗的核心。AI技术的辅助使得四诊的客观化技术不断进步。在望诊方面,有研究利用面部成像系统收集冠心病患者的面部图像,通过分析额、鼻、颊、口唇部颜色的差异,为冠心病的辨证诊断提供了客观指标。舌象作为望诊的重要部分,与胃部疾病紧密相关,AI开放平台通过对慢性胃炎患者舌象的分析,自动提取特征,发现舌象及舌苔菌群结构在不同证型间存在差异,为望诊研究提供了数字化参考。
中医闻诊包括听患者的语音、咳嗽、喘息声以及闻口气和体味。不同病证患者的语音信号特征存在差异,AI技术通过采集和分析这些信号,结合小波包变换和香农熵值,为肺系疾病的中医辨证提供了客观数据。病理性气味的产生与邪气侵扰、气血失衡、脏腑失调有关,AI技术通过预测分子气味,为中医辨证提供了新的可能。
问诊是中医诊断的重要环节,但受主客体双方影响,具有主观性。AI通过自然语言处理(NLP)技术,将患者的声音数据转化为机器可理解的语言,提取情感色彩的词汇,进行全面评估,帮助医生更好地与患者沟通,获取更多辨证参数。
切诊,即医生对患者特定部位的触诊,主要指脉诊。AI技术通过研发特殊触力传感器组件,全面、客观地获取脉搏生理信号,实现三部九候脉象的同步采集,并分析脉象幅度和宽度信号,使得通过脉象进行精准辨证成为可能。
3.3 AI在中医辅助治疗中的应用
AI技术在中医治疗领域的应用旨在提升临床疗效。例如,徐天成等开发的智能针灸机器人能够自动选择穴位,并根据患者病情制定个性化的针灸方案,通过AI算法构建的腧穴-主治网络和穴-症的小世界网络,为智能配穴提供了新的方法。陈日新基于《黄帝内经》中的腧穴敏化理论,创立了“热敏灸”,并结合智能协同系统的热敏灸机器人,通过深度学习提升了热敏灸技术的标准化,缩短了中医医师培训周期,有效解决了医院人手不足和灸疗标准化的问题。此外,AI技术与材料技术、生物技术相结合,特别是在纳米技术领域,为中药的剂型改革提供了新方向,解决了传统中药有效成分难溶和生物利用度低的问题。
3.4 中医药数据挖掘的重要性
中医药历经数千年的发展,积累了丰富的数据资源。AI技术的应用可以快速揭示数据间的内在联系,挖掘出人类难以发现的规律,推动中医药行业的进一步发展。
中医古籍在中医药的传承与创新中占据重要地位。AI技术通过数字化处理,使得中医药智慧数字图书馆、中国基本古籍库等资源库得以建立,实现了资源共享,提高了古籍检索的精确性和便捷性。AI开发的深度学习软件对古籍中的知识进行识别、提取、分析、关联和重组,为中医古籍数字化研究奠定了数据基础。
电子病历信息为医疗保健提供了宝贵的经验和证据支持,但由于其复杂性,难以实现精准化和系统化。AI技术的发展为解决这一问题提供了新思路。通过数据挖掘技术对中医电子病历数据进行分析,可以总结疾病共有特征,优化治疗方案。古今医案云平台和中医传承计算平台等工具,利用AI、深度学习算法、机器学习等技术,对海量医案及方剂进行检索和分析,挖掘方剂配伍规律和名医用药经验,继承和发扬中医的理论和实践技巧。
在大数据时代,基于数据挖掘技术和挖掘算法构建的大数据模型在机器学习领域发挥着重要作用,尤其在临床诊断、治疗和健康科学领域。这些模型不仅实现了数据分析中特征提取、模型设计和参数调优的自动化,还节省了人工调整的时间,提高了模型和数据的利用效率。
3.5 智能化中医教育
AI技术的引入为中医药教育领域带来了革命性的变化。通过数字孪生技术,可以创建虚拟仿真系统和元宇宙等平台,模拟名医医案的三维场景,构建3D经脉与穴位模型,以及重现古代药物炮制加工的场景。学生通过人机交互技术,能够亲身体验患者的病史、症状、舌象和脉象等,参与名医典型病例的诊疗过程。这种互动式学习方式有助于学生深入理解中医的望闻问切、理法方药以及针刺、艾灸、正骨等传统技艺,直观感受中医学的基本原理,促进理论与实践的紧密结合。AI技术的应用使得建立中医技能型人才培养模式,培养高素质的中医技能型人才成为可能。
四、中医智能化面临的挑战
4.1 中医药信息标准化的缺失
AI技术为中医药的现代化提供了科技支持,但缺乏标准化的数据阻碍了统一规范化数据库的建立,导致不同系统间难以实现数据融合和共享。中医的证候与症状体征之间关系复杂,临床数据具有复杂性、多维性和模糊性,这使得AI技术在临床应用中面临挑战。因此,构建以互动联通为核心的中医药大数据共享平台,保障中医诊疗的个性化,是实现中医药智能化的关键步骤。
4.2 学科交叉复合型人才的短缺
中医学深植于传统文化,而中医药领域的AI研究起步较晚,学科间的学术交流尚未充分展开。现有的AI技术对中国传统思维模式的理解尚不深入,存在技术难题尚未攻克。目前,缺乏能够融合中医专业与AI技术的研究平台,同时具备中医药与AI背景的交叉型专业人才稀缺,导致AI技术难以完全融入中医智能化,医学与技术原理的解释存在困难。
4.3 法律法规的不完善
中医药大数据包含从临床诊疗过程中提取的患者敏感信息。在数据保护体系尚不完善的情况下,如何在数据采集、存储、管理和共享等过程中有效结合信息采集与隐私保护,明确各环节职责,是中医药智能化、现代化亟待解决的问题。从伦理学角度出发,AI尚未具备自主意识,不能简单地用人类的道德准则来约束。因此,需要尽快制定相关政策,加强隐私保护监管,严格控制AI的适用范围,确保AI技术的伦理道德和保护人的合法权益。
五、结语
以“AI+中医药”为核心的新型诊疗模式正引领中医药行业向智能化、信息化、标准化和现代化转型。这种模式不仅揭示了中医的客观规律和中医药疗效的深刻内涵,而且推动了中医药理论与临床实践的进步,有效解决了中医药发展中的诸多现实问题,符合时代发展的要求。尽管中医药的智能化已经取得了一定的进展,但要实现其全面推广应用,仍面临着漫长的道路。展望未来,中医药人工智能技术的发展预计将经历三个主要阶段。
首先,中医智能辅助系统的建立将使现有的中医诊疗记录数字化,并构建一个多元融合的中医大数据平台,以及一个能够体现中医特色的临床辅助决策系统。在这一系统中,中医师可以采集四诊信息、进行辨证论治,并快速获取临床治疗意见,智能检索中医诊疗方案,从而提高诊疗效率,减轻中医师的学习与判断负担。
其次,随着数据规模的扩大和智能化程度的提高,尤其是在可穿戴设备等智能传感技术的推动下,中医智能辅助系统将逐步发展成为具有自主诊断能力的中医智能机器人。这些机器人将掌握各类智能算法,利用强大的计算能力,快速进行疾病搜索、对比和分析,提供最合理和有效的治疗方法。
最后,智慧“云”中医的实现将使中医药数据存储在云端,实现随时随地的数据访问和获取。人们可以通过智能终端设备,如可穿戴设备和手机,将个人健康数据传输至云平台。云端的“智慧中医”将根据用户需求,提供健康信息、疾病诊断和治疗建议,实现个性化的健康管理。这三个阶段的发展将共同推动中医药智能化的深入,为中医药的现代化发展开辟新的道路。