GA-RF|遗传算法-随机森林-分类|多变量特征筛选-分类预测|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab平台编译,将:GA(遗传算法)RF(随机森林)相结合,进行多输入、多特征数据的分类预测

  • 输入训练的数据包含18个特征1个响应值,即通过12个输入值预测1个输出值(多变量、多输入分类预测,个数可自行指定)

  • 通过GA算法优化随机森林中的:树个数、枝叶分叉树,这两个关键参数,提升预测的精度

  • 数据输入程序后统一进行自动归一化处理,防止训练中出现过拟合

  • 自动分析计算各个输入特征的:重要性、相关性图像实现特征降维筛选(降维个数可自行选择),降低训练难度。

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

三、算法介绍:

  1. 随机森林:随机森林是一种集成学习方法,由多个决策树组成。每棵决策树都是在不同的随机子集上训练,然后通过投票或平均来进行预测。随机森林通常具有良好的泛化能力和抗过拟合能力。

  2. 遗传算法:遗传算法是一种启发式优化算法,模拟了自然选择和遗传机制。通过遗传算法,可以搜索超参数空间以找到最佳的超参数配置,以优化模型性能。

  3. 优化过程:在基于遗传算法优化的随机森林预测中,遗传算法被用来调整随机森林的超参数,例如树的数量、树的深度、特征子集大小等。遗传算法通过生成初始种群、交叉、变异和选择等操作,逐步优化超参数配置。

  4. 适应度函数:在遗传算法中,需要定义一个适应度函数来评估每个个体(超参数配置)的性能。通常,适应度函数可以是模型在验证集上的准确率、F1分数或其他性能指标。

  5. 迭代优化:遗传算法会不断迭代,生成新的个体并根据适应度函数选择最优个体。这个过程会持续一定数量的代数,直到达到停止条件为止。

通过结合遗传算法和随机森林模型,可以更有效地搜索超参数空间,找到最佳的超参数配置,从而提高随机森林模型的预测性能和泛化能力

四、完整程序下载:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值