目录
一、程序及算法内容介绍:
基本内容:
-
本代码基于Matlab平台编译,将:GA(遗传算法)与RF(随机森林)相结合,进行多输入、多特征数据的分类预测
-
输入训练的数据包含18个特征,1个响应值,即通过12个输入值预测1个输出值(多变量、多输入分类预测,个数可自行指定)
-
通过GA算法优化随机森林中的:树个数、枝叶分叉树,这两个关键参数,提升预测的精度
-
数据输入程序后统一进行自动归一化处理,防止训练中出现过拟合
-
自动分析计算各个输入特征的:重要性、相关性图像,实现特征降维筛选(降维个数可自行选择),降低训练难度。
-
迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况
-
自动输出多种多样的的误差评价指标,自动输出大量实验效果图片
亮点与优势:
-
注释详细,几乎每一关键行都有注释说明,适合小白起步学习
-
直接运行Main函数即可看到所有结果,使用便捷
-
编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码
-
所有数据均采用Excel格式输入,替换数据方便,适合懒人选手
-
出图详细、丰富、美观,可直观查看运行效果
-
附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明
二、实际运行效果:
三、算法介绍:
-
随机森林:随机森林是一种集成学习方法,由多个决策树组成。每棵决策树都是在不同的随机子集上训练,然后通过投票或平均来进行预测。随机森林通常具有良好的泛化能力和抗过拟合能力。
-
遗传算法:遗传算法是一种启发式优化算法,模拟了自然选择和遗传机制。通过遗传算法,可以搜索超参数空间以找到最佳的超参数配置,以优化模型性能。
-
优化过程:在基于遗传算法优化的随机森林预测中,遗传算法被用来调整随机森林的超参数,例如树的数量、树的深度、特征子集大小等。遗传算法通过生成初始种群、交叉、变异和选择等操作,逐步优化超参数配置。
-
适应度函数:在遗传算法中,需要定义一个适应度函数来评估每个个体(超参数配置)的性能。通常,适应度函数可以是模型在验证集上的准确率、F1分数或其他性能指标。
-
迭代优化:遗传算法会不断迭代,生成新的个体并根据适应度函数选择最优个体。这个过程会持续一定数量的代数,直到达到停止条件为止。
通过结合遗传算法和随机森林模型,可以更有效地搜索超参数空间,找到最佳的超参数配置,从而提高随机森林模型的预测性能和泛化能力