基于强化学习中的策略梯度方法解决Pong游戏问题

项目任务

基于强化学习中的策略梯度方法PolicyGradient解决打乒乓球游戏问题。预期效果:分数从-21开始逐渐上涨收敛,Test reward的分数可以收敛到0分以上(说明打败对方了),越高越好。该项目使用百度的PaddlePaddle框架在百度的在线平台aistudio上完成。

Step1 安装依赖

安装依赖

Step2 导入依赖

导入依赖

Step3设置超参数

设置超参数

Step4 搭建Model、Algorithm、Agent架构

网络模型采用全连接神经网络。
全连接神经网络作为网络模型
直接使用百度强化学习库parl中的策略梯度算法。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
强化学习玩Atari游戏是一种基于深度强化学习算法的方法,其使用了深度Q学习算法。这种方法通过将游戏界面作为输入,直接从游戏界面学习,以实现对Atari游戏的学习和玩耍。 具体来说,深度Q学习算法使用了经验回放和目标网络的技术。经验回放是一种存储和重复使用过去的经验的方法,它可以帮助算法更好地学习和记忆。目标网络是一个用于计算目标Q值的网络,它的参数是固定的,以减少目标Q值的变化。 在实现强化学习玩Atari游戏的过程,可以使用深度强化学习框架,如TensorFlow或PyTorch,来构建深度Q网络。该网络将游戏界面作为输入,并输出每个动作的Q值。然后,根据Q值选择最佳动作,并执行该动作。通过不断与环境交互,更新网络参数,以优化Q值的估计。 以下是一个示例代码,演示了如何使用深度Q学习算法玩Atari游戏Pong: ```python import gym import numpy as np import tensorflow as tf # 创建环境 env = gym.make('Pong-v0') # 定义深度Q网络 model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, (8, 8), strides=(4, 4), activation='relu', input_shape=(84, 84, 4)), tf.keras.layers.Conv2D(64, (4, 4), strides=(2,2), activation='relu'), tf.keras.layers.Conv2D(64, (3, 3), strides=(1, 1), activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dense(env.action_space.n) ]) # 定义经验回放缓冲区 replay_buffer = [] # 定义训练参数 epsilon = 1.0 # 探索率 epsilon_decay = 0.99 # 探索率衰减率 epsilon_min = 0.01 # 最小探索率 gamma = 0.99 # 折扣因子 batch_size = 32 # 批量大小 # 定义优化器和损失函数 optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) loss_fn = tf.keras.losses.MeanSquaredError() # 定义目标网络 target_model = tf.keras.models.clone_model(model) target_model.set_weights(model.get_weights()) # 定义训练函数 def train(): # 从经验回放缓冲区随机采样一批数据 batch = np.random.choice(len(replay_buffer), size=batch_size, replace=False) states, actions, rewards, next_states, dones = zip(*[replay_buffer[i] for i in batch]) states = np.array(states) actions = np.array(actions) rewards = np.array(rewards) next_states = np.array(next_states) dones = np.array(dones) # 计算目标Q值 q_values_next = target_model.predict(next_states) targets = rewards + gamma * np.max(q_values_next, axis=1) * (1 - dones) # 计算当前Q值 with tf.GradientTape() as tape: q_values = model(states) q_values_actions = tf.reduce_sum(q_values * tf.one_hot(actions, env.action_space.n), axis=1) loss = loss_fn(targets, q_values_actions) # 更新网络参数 grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # 开始训练 for episode in range(1000): state = env.reset() state = preprocess(state) # 预处理游戏界面 done = False total_reward = 0 while not done: # 选择动作 if np.random.rand() < epsilon: action = env.action_space.sample() # 随机动作 else: q_values = model.predict(np.expand_dims(state, axis=0)) action = np.argmax(q_values) # 执行动作 next_state, reward, done, _ = env.step(action) next_state = preprocess(next_state) # 预处理游戏界面 # 存储经验 replay_buffer.append((state, action, reward, next_state, done)) # 更新状态和总奖励 state = next_state total_reward += reward # 训练网络 if len(replay_buffer) >= batch_size: train() # 更新目标网络 if episode % 10 == 0: target_model.set_weights(model.get_weights()) # 衰减探索率 epsilon = max(epsilon * epsilon_decay, epsilon_min) # 打印结果 print('Episode: {}, Total Reward: {}'.format(episode, total_reward)) # 演示游戏 state = env.reset() state = preprocess(state) done = False total_reward = 0 while not done: q_values = model.predict(np.expand_dims(state, axis=0)) action = np.argmax(q_values) next_state, reward, done, _ = env.step(action) next_state = preprocess(next_state) state = next_state total_reward += reward env.render() print('Total Reward: {}'.format(total_reward)) env.close() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值